Skip to main content

Ekeland Variational Principles in 2-Local Branciari Metric Spaces

  • Chapter
  • First Online:
Nonlinear Analysis and Global Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 167))

Abstract

An Ekeland Variational Principle is stated over a class of local and 2-local Branciari metric spaces, and its relationships with the Dependent Choice Principle are discussed. Applications to Caristi–Kirk fixed point theorems over such a setting are also being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alamri, T. Suzuki, L.A. Khan, Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in ν-generalized metric spaces. J. Funct. Spaces 2015, 709391 (2015)

    MathSciNet  MATH  Google Scholar 

  2. M. Altman, A generalization of the Brezis-Browder principle on ordered sets. Nonlinear Anal. 6, 157–165 (1982)

    Article  MathSciNet  Google Scholar 

  3. T.Q. Bao, P.Q. Khanh, Are several recent generalizations of Ekeland’s variational principle more general than the original principle? Acta Math. Vietnamica 28, 345–350 (2003)

    MathSciNet  MATH  Google Scholar 

  4. P. Bernays, A system of axiomatic set theory: Part III. Infinity and enumerability analysis. J. Symb. Log. 7, 65–89 (1942)

    Article  Google Scholar 

  5. N. Bourbaki, Sur le théorème de Zorn. Archiv Math. 2, 434–437 (1949/1950)

    Article  Google Scholar 

  6. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 57, 31–37 (2000)

    MathSciNet  MATH  Google Scholar 

  7. H. Brezis, F.E. Browder, A general principle on ordered sets in nonlinear functional analysis. Adv. Math. 21, 355–364 (1976)

    Article  MathSciNet  Google Scholar 

  8. A. Brøndsted, Fixed points and partial orders. Proc. Am. Math. Soc. 60, 365–366 (1976)

    MathSciNet  MATH  Google Scholar 

  9. N. Brunner, Topologische Maximalprinzipien. Zeitschr. Math. Logik Grundl. Math. 33, 135–139 (1987)

    Article  MathSciNet  Google Scholar 

  10. J. Caristi, W.A. Kirk, Geometric fixed point theory and inwardness conditions, in The Geometry of Metric and Linear Spaces. Lecture Notes Mathematics, vol. 490 (Springer, Berlin, 1975), pp. 74–83

    Google Scholar 

  11. G.Y. Chen, X.X. Huang, S.H. Hou, General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 106, 151–164 (2000)

    Article  MathSciNet  Google Scholar 

  12. G.Y. Chen, X.X. Huang, S.H. Hou, General Ekeland’s variational principle for set-valued mappings [Errata Corrige]. J. Optim. Theory Appl. 117, 217–218 (2003)

    Article  MathSciNet  Google Scholar 

  13. P.J. Cohen, Set Theory and the Continuum Hypothesis (Benjamin, New York, 1966)

    MATH  Google Scholar 

  14. R. Deville, N. Ghoussoub, Perturbed minimization principles and applications, in Handbook of the Geometry of Banach Spaces, ed. by W.B. Johnson, J. Lindenstrauss, vol. I (Elsevier Science B.V., Amsterdam, 2001), pp. 399–435

    Google Scholar 

  15. J. Dodu, M. Morillon, The Hahn-Banach property and the axiom of choice. Math. Logic Quart. 45, 299–314 (1999)

    Article  MathSciNet  Google Scholar 

  16. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  17. I. Ekeland, Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443–474 (1979)

    Article  MathSciNet  Google Scholar 

  18. A. Goepfert, H. Riahi, C. Tammer, C. Zălinescu, Variational Methods in Partially Ordered Spaces. Canadian Mathematical Society Books Mathematics, vol. 17 (Springer, New York, 2003)

    Google Scholar 

  19. P.R. Halmos, Naive Set Theory (Van Nostrand Reinhold, New York, 1960)

    MATH  Google Scholar 

  20. D.H. Hyers, G. Isac, T.M. Rassias, Topics in Nonlinear Analysis and Applications (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  21. M. Jleli, B. Samet, The Kannan’s fixed point theorem in a cone rectangular metric space. J. Nonlinear Sci. Appl. 2, 161–167 (2009)

    Article  MathSciNet  Google Scholar 

  22. O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japon. 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  23. B.G. Kang, S. Park, On generalized ordering principles in nonlinear analysis. Nonlinear Anal. 14, 159–165 (1990)

    Article  MathSciNet  Google Scholar 

  24. S. Kasahara, On some generalizations of the Banach contraction theorem. Publ. Res. Inst. Math. Sci. Kyoto Univ. 12, 427–437 (1976)

    Article  MathSciNet  Google Scholar 

  25. P.Q. Khanh, On Caristi-Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Bull. Polish Acad. Sci. 37, 33–39 (1989)

    MathSciNet  MATH  Google Scholar 

  26. W.A. Kirk, N. Shahzad, Generalized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2013, 129 (2013)

    Article  MathSciNet  Google Scholar 

  27. W.A. Kirk, N. Shahzad, Correction: generalized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2014, 177 (2014)

    Article  Google Scholar 

  28. G.H. Moore, Zermelo’s Axiom of Choice: Its Origin, Development and Influence (Springer, New York, 1982)

    Book  Google Scholar 

  29. Y. Moskhovakis, Notes on Set Theory (Springer, New York, 2006)

    Google Scholar 

  30. A.B. Nemeth, A nonconvex vector minimization problem. Nonlinear Anal. 10, 669–678 (1986)

    Article  MathSciNet  Google Scholar 

  31. S. Park, J.S. Bae, On the Ray-Walker extension of the Caristi-Kirk fixed point theorem. Nonlinear Anal. 9, 1135–1136 (1985)

    Article  MathSciNet  Google Scholar 

  32. B. Samet, Discussion on “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari. Publ. Math. Debrecen 76, 493–494 (2010)

    MATH  Google Scholar 

  33. E. Schechter, Handbook of Analysis and its Foundation (Academic Press, New York, 1997)

    MATH  Google Scholar 

  34. T. Suzuki, Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014, 458098 (2014)

    MathSciNet  MATH  Google Scholar 

  35. A. Tarski, Axiomatic and algebraic aspects of two theorems on sums of cardinals. Fund. Math. 35, 79–104 (1948)

    Article  MathSciNet  Google Scholar 

  36. D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345–392 (1992)

    Article  MathSciNet  Google Scholar 

  37. M. Turinici, A generalization of Altman’s ordering principle. Proc. Am. Math. Soc. 90, 128–132 (1984)

    MathSciNet  MATH  Google Scholar 

  38. M. Turinici, Function pseudometric VP and applications. Bul. Inst. Polit. Iaşi 53(57), 393–411 (2007)

    Google Scholar 

  39. M. Turinici, Variational statements on KST-metric structures. Ann. Şt. Univ. Ovidius Constanţa 17, 231–246 (2009)

    MathSciNet  MATH  Google Scholar 

  40. M. Turinici, Function variational principles and coercivity over normed spaces. Optimization 59, 199–222 (2010)

    Article  MathSciNet  Google Scholar 

  41. M. Turinici, Functional contractions in local Branciari metric spaces. Romai J. 8(2), 189–199 (2012)

    MathSciNet  MATH  Google Scholar 

  42. M. Turinici, Sequential maximality principles, in Mathematics Without Boundaries ed. by T. M. Rassias, P.M. Pardalos (Springer, New York, 2014), pp. 515–548

    Google Scholar 

  43. E.S. Wolk, On the principle of dependent choices and some forms of Zorn’s lemma. Can. Math. Bull. 26, 365–367 (1983)

    Article  MathSciNet  Google Scholar 

  44. C.K. Zhong, A generalization of Ekeland’s variational principle and application to the study of the relation between the weak P.S. condition and coercivity. Nonlinear Anal. 29, 1421–1431 (1997)

    Google Scholar 

  45. M. Zorn, A remark on method in transfinite algebra. Bull. Am. Math. Soc. 41, 667–670 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Turinici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turinici, M. (2021). Ekeland Variational Principles in 2-Local Branciari Metric Spaces. In: Rassias, T.M., Pardalos, P.M. (eds) Nonlinear Analysis and Global Optimization. Springer Optimization and Its Applications, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-030-61732-5_23

Download citation

Publish with us

Policies and ethics