Skip to main content

Friction Models in the Framework of Set-Valued and Convex Analysis

  • Chapter
  • First Online:
Nonlinear Analysis and Global Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 167))

  • 876 Accesses

Abstract

It is well known that modeling friction forces is a complex problem and constitutes an important topic in both mechanical engineering and applied mathematics. In this paper, we show how the approach of Moreau and Panagiotopoulos can be used to develop a suitable methodology for the formulation and the mathematical analysis of various friction models in nonsmooth mechanics. We study 11 widespread engineering friction models in the context of modern set-valued and convex analysis. The stability analysis (in the sense of Lyapunov) of a two-degree-of-freedom mechanical system with dry friction is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Adly, A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics. SpringerBriefs (Springer, Berlin, 2017)

    Book  Google Scholar 

  2. S. Adly, D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with applications to friction problems. J. Math. Pures Appl. 83, 17–51 (2004)

    Article  MathSciNet  Google Scholar 

  3. S. Adly, H. Attouch, A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction, in Nonsmooth Mechanics and Analysis. Adv. Mech. Math., vol. 12 (Springer, New York, 2006), pp. 289–304

    Google Scholar 

  4. G. Amontons, On the resistance originating in machines, in Proceedings of the French Royal Academy of Sciences (1699), pp. 206–222

    Google Scholar 

  5. S. Anderson, A. Söderberg, S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40, 580–587 (2007)

    Article  Google Scholar 

  6. B. Armstrong-Hélouvry, Control of Machine with Friction. The Kluwer International Series in Engineering and Computer Science, Robotics (Springer Science+Business Media, New York, 1991)

    Google Scholar 

  7. K.J. Åström, Control of systems with friction, in Proceedings of the Fourth International Conferences on Motion and Vibration Control (1998), pp. 25–32

    Google Scholar 

  8. P. Bingham, S. Theodosiades, T. Saunders, E. Grant, R. Daubney, A study on automotive drivetrain transient response to ‘clutch abuse’ events. Proc. Inst. Mech. Eng. P D J. Automob. Eng. 230(10), 1–14 (2016)

    Google Scholar 

  9. P.A. Bliman, M. Sorine, Easy-to-use realistic dry friction models for automatic control, in Proceedings of the 3nd European Control Conference, Roma (1995), pp. 3788–3794

    Google Scholar 

  10. J. Čerkala, A. Jadovská, Mobile robot dynamics with friction in simulink, in Conference Paper, 22th Annual Conference Proceedings of the International Scientific Conference, Technical Computing Bratislava, Bratislava, Slovakia (2014)

    Google Scholar 

  11. K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  Google Scholar 

  12. F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983)

    MATH  Google Scholar 

  13. C.A. Coulomb, Théorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur dews cordages. Mem. Math Phys. Paris X, 161–342 (1785)

    Google Scholar 

  14. L. Da Vinci (1519), The Notebooks, ed. by J.P. Richter (Dover, New York, 1970)

    Google Scholar 

  15. D. Goeleven, Complementarity and Variational Inequalities in Electronics (Academic, Elsevier, London, 2017)

    MATH  Google Scholar 

  16. M. Jean, J.J. Moreau, Unilaterality and dry friction in the dynamics of rigid body collections, in Proc. Contact Mechanics Int. Symp., ed. by A. Curnier (Presses Polytechniques et Universitaires Romandes, Lausanne, 1992), pp. 31–48

    Google Scholar 

  17. D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic control. Trans. ASME 107, 100–103 (1985)

    Google Scholar 

  18. M. Kidouche, R. Riane, On the design of proportional integral observer for a rotary drilling system, in 8th CHAOS Conference Proceedings, Henri Poincaré Institute, Paris (2015)

    Google Scholar 

  19. R.I. Leine, H. Nijmeijer, Dynamics and Bifurcation of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18 (Springer, Berlin, 2004)

    Google Scholar 

  20. Y.F. Liu, J. Li, Z.M. Zhang, X.H. Hu, W.J. Zhang, Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 6, 15–28 (2015)

    Article  Google Scholar 

  21. J.J. Moreau, La Notion du Surpotentiel et les Liaisons Unilatérales on Elastostatique. C.R. Acad. Sci. Paris 167A, 954–957 (1968)

    Google Scholar 

  22. J.J. Moreau, Dynamique des systèmes à liaisons unilatérales avec frottement sec éventuel; essais numériques. Tech. Rep. 85-1, LMGC, Montpellier, 1986

    Google Scholar 

  23. J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in Non-Smooth Mechanics and Applications, ed. by J.J. Moreau, P.D. Panagiotopoulos. CISM Courses and Lectures, vol. 302 (Springer, Wien, 1988), pp. 1–82

    Google Scholar 

  24. A.J. Morin, New friction experiments carried out at Metz in 1831–1833. Proc. Fr. R. Acad. Sci. 4, 1–128 (1833)

    Google Scholar 

  25. H. Olsson, Control systems with friction. Department of Automatic Control, Lund Institute of Technology (LTH), Lund, 1996

    Google Scholar 

  26. H. Olsson, K.J. Aström, C. Canudas de Wit, M. G öfvert, P. Lischinsky, Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    Google Scholar 

  27. G. Orwell, Nineteen Eighty-Four (Secker and Warburg, London, 1949)

    Google Scholar 

  28. P.D. Panagiotopoulos, Non-convex superpotentials in the sense of F.H. Clarke and applications. Mech. Res. Commun. 8, 335–340 (1981)

    Google Scholar 

  29. P.D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering (Springer, Berlin, 1993)

    Google Scholar 

  30. V.L. Popov, Contact Mechanics and Friction, Physical Principles and Applications (Springer, Berlin, 2010)

    Book  Google Scholar 

  31. J. Rauch, Discontinuous semilinear differential equations and multiple valued maps. Proc. Amer. Math. Soc. 64, 277–282 (1977)

    Article  MathSciNet  Google Scholar 

  32. L. Ravanbod-Shirazi, A. Besançon-Voda, Friction identification using the Karnopp model applied to an electropneumatic actuator. Proc. Inst. Mech. Eng. P I J. Syst. Control Eng. 217(2), 123–138 (2003)

    Google Scholar 

  33. O. Reynolds, On the Theory of Lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. 177, 157–234 (1886)

    Google Scholar 

  34. C. Simone, A.M. Okamura, Modelling of needle insertion for robot-assisted percutaneous therapy, in Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC (2002)

    Google Scholar 

  35. R. Stribeck, Die Wesentlichen Eigenschaften der Gleit-und Rollenlager. Z. Verein. Deut. Ing. 46(38), 1341–1348 (1902)

    Google Scholar 

  36. R. Trentini, A. Campos, A. da Silva Silveira, G. Espindola, Identification of friction effects in a linear positioning servopneumatic system. Sci. Eng. J. 22(1), 97–101 (2013)

    Google Scholar 

  37. H. Xia, L. Han, C. Pan, H. Jia, L. Yu, Simulation of motion interactions of a 2-DOF linear piezoelectric impact drive mechanism with a single friction interface. Appl. Sci. 8, 1400 (2018). https://doi.org/10.3390/app8081400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Goeleven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adly, S., Goeleven, D., Oujja, R. (2021). Friction Models in the Framework of Set-Valued and Convex Analysis. In: Rassias, T.M., Pardalos, P.M. (eds) Nonlinear Analysis and Global Optimization. Springer Optimization and Its Applications, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-030-61732-5_1

Download citation

Publish with us

Policies and ethics