Skip to main content

Active Scene Classification via Dynamically Learning Prototypical Views

  • Conference paper
  • First Online:
Book cover Dynamic Data Driven Applications Systems (DDDAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12312))

Included in the following conference series:

  • 1176 Accesses

Abstract

Scene classification is an important computer vision problem with applications to a wide range of domains including remote sensing, robotics, autonomous driving, defense, and surveillance. However, many approaches to scene classification make simplifying assumptions about the data, and many algorithms for scene classification are ill-suited for real-world use cases. Specifically, scene classification algorithms generally assume that the input data consists of single views that are extremely representative of a limited set of known scene categories. In real-world applications, such perfect data is rarely encountered. In this paper, we propose an approach for active scene classification where an agent must assign a label to the scene with high confidence while minimizing the number of sensor adjustments, and the agent is also embedded with the capability to dynamically update its underlying machine learning models. Specifically, we employ the Dynamic Data-Driven Applications Systems paradigm: our machine learning model drives the sensor manipulation, and the data captured by the manipulated sensor is used to update the machine learning model in a feedback control loop. Our approach is based on learning to identify prototypical views of scenes in a streaming setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. IJCV 1(4), 333–356 (1988)

    Article  Google Scholar 

  2. Bajcsy, R.: Active perception. Proc. IEEE 76(8), 966–1005 (1988)

    Article  Google Scholar 

  3. Bajcsy, R., Aloimonos, Y., Tsotsos, J.K.: Revisiting active perception. Autonomous Robots 42(2), 177–196 (2018)

    Article  Google Scholar 

  4. Ballard, D.H.: Reference frames for animate vision. In: IJCAI, vol. 89 (1989)

    Google Scholar 

  5. Bappy, J.H., Paul, S., Roy-Chowdhury, A.K.: Online adaptation for joint scene and object classification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 227–243. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_14

    Chapter  Google Scholar 

  6. Binney, J., Krause, A., Sukhatme, G.S.: Informative path planning for an autonomous underwater vehicle. In: ICRA (2010)

    Google Scholar 

  7. Binney, J., Krause, A., Sukhatme, G.S.: Optimizing waypoints for monitoring spatiotemporal phenomena. In: IJRR (2013)

    Google Scholar 

  8. Blasch, E., Seetharaman, G., Darema, F.: Dynamic data driven applications systems (DDDAS) modeling for automatic target recognition. In: Automatic Target Recognition XXIII, vol. 8744, p. 87440J. SPIE (2013)

    Google Scholar 

  9. Blasch, E.P., Aved, A.J.: Dynamic data-driven application system (dddas) for video surveillance user support. Procedia Comput. Sci. 51, 2503–2517 (2015)

    Article  Google Scholar 

  10. Brown, C.: Prediction and cooperation in gaze control. Bio. cybernetics (1990)

    Google Scholar 

  11. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In: ICCV, pp. 2488–2496 (2015)

    Google Scholar 

  12. Charrow, B.: Information-theoretic active perception for multi-robot teams (2015)

    Google Scholar 

  13. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. IJRR 30(11), 1343–1377 (2011)

    Google Scholar 

  14. Chen, X.S., He, H., Davis, L.S.: Object detection in 20 questions. In: WACV (2016)

    Google Scholar 

  15. Coombs, D.J., Brown, C.M.: Intelligent gaze control in binocular vision. In: ISIC. pp. 239–245. IEEE (1990)

    Google Scholar 

  16. Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86

    Chapter  Google Scholar 

  17. Decaestecker, C.: Finding prototypes for nearest neighbour classification by means of gradient descent and deterministic annealing. Pattern Recogn. 30, 281–288 (1997)

    Article  Google Scholar 

  18. Denham, M., Wendt, K., Bianchini, G., Cortés, A., Margalef, T.: Dynamic data-driven genetic algorithm for forest fire spread prediction. J. Computat. Sci. 3(5), 398–404 (2012)

    Article  Google Scholar 

  19. Douglas, C.C., et al.: DDDAS approaches to wildland fire modeling and contaminant tracking. In: Proceedings of the 2006 Winter Simulation Conference, pp. 2117–2124. IEEE (2006)

    Google Scholar 

  20. Duda, R.: Sequential k-means. http://www.cs.princeton.edu/courses/archive/ fall08/cos436/Duda/C/sk_means.htm

  21. Garcia, A., Vezhnevets, A., Ferrari, V.: An active search strategy for efficient object detection. In: CVPR. pp. 3022–3031 (2015)

    Google Scholar 

  22. Geva, S., Sitte, J.: Adaptive nearest neighbor pattern classific. In: IEEE TNN (1991)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  24. Huang, Y.S., et al.: A simulated annealing approach to construct optimized prototypes for nearest-neighbor classification. In: ICPR, vol. 4, pp. 483–487. IEEE (1996)

    Google Scholar 

  25. Jayaraman, D., Grauman, K.: Learning to look around: Intelligently exploring unseen environments for unknown tasks. In: CVPR, pp. 1238–1247 (2018)

    Google Scholar 

  26. Johns, E., Leutenegger, S., Davison, A.J.: Pairwise decomposition of image sequences for active multi-view recognition. In: CVPR, pp. 3813–3822 (2016)

    Google Scholar 

  27. Kohonen, T.: Improved versions of learning vector quantization. In: IJCNN (1990)

    Google Scholar 

  28. Kohonen, T.: The self-organizing map. In: Proceedings of the IEEE (1990)

    Google Scholar 

  29. Li, X., Guo, R., Cheng, J.: Incorporating incremental and active learning for scene classification. In: ICMLA, vol. 1, pp. 256–261. IEEE (2012)

    Google Scholar 

  30. Li, X., Guo, Y.: Adaptive active learning for image classification. In: CVPR (2013)

    Google Scholar 

  31. Li, X., Guo, Y.: Multi-level adaptive active learning for scene classification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 234–249. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_16

    Chapter  Google Scholar 

  32. Lindley, D.V.: On a measure of the information provided by an experiment. Ann. Math. Stat. 27, 986–1005 (1956)

    Article  MathSciNet  Google Scholar 

  33. Liu, C.L., Nakagawa, M.: Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition. Pattern Recogn. 34(3), 601–615 (2001)

    Article  Google Scholar 

  34. Ma, K.C., Liu, L., Sukhatme, G.S.: Informative planning and online learning with sparse gaussian processes. In: ICRA (2017)

    Google Scholar 

  35. MacKay, D.J.: Information-based objective functions for active data selection. Neural Comput. 4, 590–604 (1992)

    Article  Google Scholar 

  36. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  37. Mathe, S., Pirinen, A., Sminchisescu, C.: Reinforcement learning for visual object detection. In: CVPR, pp. 2894–2902 (2016)

    Google Scholar 

  38. Paul, S., Bappy, J.H., Roy-Chowdhury, A.K.: Efficient selection of informative and diverse training samples with applications in scene classification. In: ICIP, pp. 494–498. IEEE (2016)

    Google Scholar 

  39. Reineking, T., Schult, N., Hois, J.: Evidential combination of ontological and statistical information for active scene classification. In: KEOD, pp. 72–79 (2009)

    Google Scholar 

  40. Sato, A., Yamada, K.: Generalized learning vector quantization. In: NeurIPS (1996)

    Google Scholar 

  41. Sato, A., Yamada, K.: A formulation of learning vector quantization using a new misclassification measure. In: ICPR, vol. 1, pp. 322–325. IEEE (1998)

    Google Scholar 

  42. Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  43. Sommerlade, E., Reid, I.: Information-theoretic active scene exploration. In: CVPR, pp. 1–7. IEEE (2008)

    Google Scholar 

  44. Wilkes, D., Tsotsos, J.K.: Active object recognition. In: CVPR, IEEE (1992)

    Google Scholar 

  45. Wixson, L.: Viewpoint selection for visual search. In: CVPR (1994)

    Google Scholar 

  46. Xiao, J., Ehinger, K.A., Oliva, A., Torralba, A.: Recognizing scene viewpoint using panoramic place representation. In: CVPR. pp. 2695–2702. IEEE (2012)

    Google Scholar 

  47. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: CVPR, pp. 3474–3482 (2018)

    Google Scholar 

  48. Yu, X., Fermüller, C., Teo, C.L., Yang, Y., Aloimonos, Y.: Active scene recognition with vision and language. In: ICCV, pp. 810–817. IEEE (2011)

    Google Scholar 

  49. Zheng, C., Yi, Y., Qi, M., Liu, F., Bi, C., Wang, J., Kong, J.: Multicriteria-based active discriminative dictionary learning for scene recognition. IEEE Access (2017)

    Google Scholar 

  50. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE TPAMI 40(6), 1452–1464 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zachary A. Daniels or Dimitris N. Metaxas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daniels, Z.A., Metaxas, D.N. (2020). Active Scene Classification via Dynamically Learning Prototypical Views. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics