Skip to main content

Application of Wavelet Transform to Damage Detection in Brittle Materials via Energy and Entropy Evaluation of Acoustic Emission Signals

Part of the SEMA SIMAI Springer Series book series (ICIAM2019SSSS,volume 4)

Abstract

Acoustic emission (AE) hits from uniaxial compression tests of andesite rock samples were processed with the continuous wavelet transform (CWT). The quest for frequency bands with minimum entropy values arrived at 150 and 250 kHz as those related to macro-fracture mechanisms. A preprocessing algorithm was developed in order to attenuate the influence of reflected signals at the inner interfaces of the material. It is based on the detection of abrupt phase changes of the CWT coefficients. Entropy calculations performed with the hits already processed permitted a reliable study of the AE entropy evolution in the relevant frequency bands and its relationship with the corresponding cumulative AE energy evolution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huq, F., Liu, J., Tonge, A.L., Graham-Brady, L.: A micromechanics based model to predict micro-crack coalescence in brittle materials under dynamic compression. Eng. Fract. Mech. (2019). https://doi.org/10.1016/J.ENGFRACMECH.2019.106515

  2. Zitto, M.E., Piotrkowski, R., Gallego, A., Sagasta, F., Benavent-Climent, A.: Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission. Mech. Syst. Signal Process. (2015). https://doi.org/10.1016/J.YMSSP.2015.02.006

  3. Sagasta, F., Zitto, M.E., Piotrkowski, R., Benavent-Climent, A., Suarez, E., Gallego, A.: Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mech. Syst. Signal Process. (2018). https://doi.org/10.1016/j.ymssp.2017.09.022

  4. Filipussi, D., Piotrkowski, R., Ruzzante, J.: Characterization of a crack by the acoustic emission signal generated during propagation. Procedia Mater. Sci. (2012). https://doi.org/10.1016/j.mspro.2012.06.036

  5. Amiri, M., Modarres, M.: An entropy-based damage characterization. Entropy (2014). https://doi.org/10.3390/e16126434

  6. Imanian, A., Modarres, M.: A thermodynamic entropy-based damage assessment with applications to prognostics and health management. Struct. Health Monit. (2018). https://doi.org/10.1177/1475921716689561

  7. Vaughn, N., Kononov, A., Moore, B., Rougier, E., Viswanathan, H., Hunter, A.: Statistically informed upscaling of damage evolution in brittle materials. Theor. Appl. Fract. Mech. (2019). https://doi.org/10.1016/J.TAFMEC.2019.04.012

  8. Kang, Y., Liu, H., Aziz M., Kassim, K.A.: A wavelet transform method for studying the energy distribution characteristics of microseismicities associated rock failure. J. Traffic Transp. Eng. (Engl. Ed.) (2019). https://doi.org/10.1016/J.JTTE.2018.03.007

  9. Grosse, C., Ohtsu, M. (eds.): Acoustic Emission Testing. Springer, Heidelberg (2008)

    Google Scholar 

  10. Ono, K. : Acoustic Emission. In: Rossing T.D. (ed.) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York (2014)

    Google Scholar 

  11. Piotrkowski, R., Castro, E., Gallego, A.: Wavelet power, entropy and bispectrum applied to AE signals for damage identification and evaluation of corroded galvanized steel. Mech. Syst. Signal Process. (2009). https://doi.org/10.1016/j.ymssp.2008.05.006

  12. Piotrkowski, R., Gallego, A., Castro, E., García-Hernandez, M.T., Ruzzante, J.E.: Ti and Cr nitride coating/steel adherence assessed by acoustic emission wavelet analysis. NDT & E Int. (2005). https://doi.org/10.1016/J.NDTEINT.2004.09.002

  13. Meyer, Y., Ryan, R.: Wavelets: algorithms & applications. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    Google Scholar 

  14. Filipussi, D., Muszkats, J., Sassano, M., Zitto, M., Piotrkowski, R.: Fractura de roca andesita y análisis espectral de señales de emisión acústica. Tecnura. 23(61), 45–56 (2019)

    CrossRef  Google Scholar 

  15. Muszkats, J.P., Filipussi, D., Zitto, M.E., Sassano, M., Piotrkowski, R.: Detection of fracture regimes in andesite rock via the energy evolution of acoustic emission signals in relevant frequency bands. In: Ceballos, L., Gariboldi, C., Roccia, B. (eds.) VII Congreso de Matemática Aplicada, Computacional e Industrial, pp. 489–492. ASAMACI, Río Cuarto, Córdoba (2019)

    Google Scholar 

  16. Rao, M.V.M.S., Prasanna Lakshmi, K.J.: Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture. Curr. Sci. (2005). https://doi.org/10.2307/24110936

  17. Mahmoudi, A., Mohammadi, B.: On the evaluation of damage-entropy model in cross-ply laminated composites. Eng. Fract. Mech. (2019). https://doi.org/10.1016/J.ENGFRACMECH.2019.106626

  18. Truffet, L.: Shannon entropy reinterpreted. Rep. Math. Phys. (2017). https://doi.org/10.1016/S0034-4877(18)30050-8

  19. Dobovišek, A., Markovič, R., Brumen, M., Fajmut, A.: The maximum entropy production and maximum Shannon information entropy in enzyme kinetics. Phys. A Stat. Mech. Appl. (2018). https://doi.org/10.1016/J.PHYSA.2017.12.111

  20. Chai, M., Zhang, Z. Duan, Q.: A new qualitative acoustic emission parameter based on Shannon’s entropy for damage monitoring. Mech. Syst. Signal Process. (2018). https://doi.org/10.1016/J.YMSSP.2017.08.007

  21. Bressan, G., Barnaba, C., Gentili, S., Rossi, G.: Information entropy of earthquake populations in northeastern Italy and western Slovenia. Phys. Earth Planet. Inter. (2000). https://doi.org/10.1016/J.PEPI.2017.08.001

  22. Filipussi, D.A., Guzmán, C.A., Xargay, H.D., Hucailuk, C., Torres, D.N.: Study of acoustic emission in a compression test of andesite rock. Procedia Mater. Sci. (2015). https://doi.org/10.1016/J.MSPRO.2015.04.037

  23. Boggess, A., Narcowich, F.J.: A First Course in Wavelets with Fourier Analysis, 2nd edn. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  24. Torrence C., Compo G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. (1998). https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

  25. López Pumarega, M.I., Armeite, M., Ruzzante, J.E., Piotrkowski, R.: Relation between amplitude and duration of acoustic emission signals. Rev. Quant. Nondestruct. Eval. 22, 1431–1438 (2003)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The present work received financial support and is part of the Program UBACyT 20020160100038BA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Muszkats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muszkats, J.P., Zitto, M.E., Sassano, M., Piotrkowski, R. (2021). Application of Wavelet Transform to Damage Detection in Brittle Materials via Energy and Entropy Evaluation of Acoustic Emission Signals. In: Muszkats, J.P., Seminara, S.A., Troparevsky, M.I. (eds) Applications of Wavelet Multiresolution Analysis. SEMA SIMAI Springer Series(), vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-61713-4_5

Download citation