Skip to main content

A Fast SSVEP-Based Brain-Computer Interface

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

Literature of brain-computer interfacing (BCI) for steady-state visual evoked potentials (SSVEP) shows that canonical correlation analysis (CCA) is the most used method to extract features. However, it is known that CCA tends to rapidly overfit, leading to a decrease in performance. Furthermore, CCA uses information of just one class, thus neglecting possible overlaps between different classes. In this paper we propose a new pipeline for SSVEP-based BCIs, called corrLDA, that calculates correlation values between SSVEP signals and sine-cosine reference templates. These features are then reduced with a supervised method called shrinkage linear discriminant analysis that, unlike CCA, can deal with shorter time windows and includes between-class information. To compare these two techniques, we analysed an open access SSVEP dataset from 24 subjects where four stimuli were used in offline and online tasks. The online task was performed both in control condition and under different perturbations: listening, speaking and thinking. Results showed that corrLDA pipeline outperforms CCA in short trial lengths, as well as in the four additional noisy conditions.

This research was supported by MINECO (RYC-2014-15671).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, M., Lee, M., Choi, J., Jun, S.: A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors 14(8), 14601–14633 (2014). https://doi.org/10.3390/s140814601

    Article  Google Scholar 

  2. Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J. Neural Eng. 6(4), 046002 (2009). https://doi.org/10.1088/1741-2560/6/4/046002

    Article  Google Scholar 

  3. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.: Single-trial analysis and classification of ERP components-a tutorial. NeuroImage 56(2), 814–825 (2011). https://doi.org/10.1016/j.neuroimage.2010.06.048

    Article  Google Scholar 

  4. Blankertz, B., et al.: The berlin brain-computer interface: non-medical uses of BCI technology. Front. Neurosci. 4, 198 (2010). https://doi.org/10.3389/fnins.2010.00198

    Article  Google Scholar 

  5. Cao, L., Ju, Z., Li, J., Jian, R., Jiang, C.: Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. J. Neurosci. Methods 253, 10–17 (2015). https://doi.org/10.1016/j.jneumeth.2015.05.014

    Article  Google Scholar 

  6. Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008). https://doi.org/10.1016/S1474-4422(08)70223-0

    Article  Google Scholar 

  7. Dobkin, B.H.: Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579(3), 637–642 (2007). https://doi.org/10.1113/jphysiol.2006.123067

    Article  Google Scholar 

  8. Farooq, M., Dehzangi, O.: High accuracy wearable SSVEP detection using feature profiling and dimensionality reduction. In: 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 161–164. IEEE (2017). https://doi.org/10.1109/BSN.2017.7936032

  9. Friman, O., Volosyak, I., Graser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans. Biomed. Eng. 54(4), 742–750 (2007). https://doi.org/10.1109/TBME.2006.889160

    Article  Google Scholar 

  10. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 137–140 (2003). https://doi.org/10.1109/TNSRE.2003.814449

    Article  Google Scholar 

  11. İşcan, Z., Nikulin, V.V.: Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. PLoS ONE 13(1), e0191673 (2018). https://doi.org/10.1371/journal.pone.0191673

    Article  Google Scholar 

  12. Kawanabe, M., Vidaurre, C., Blankertz, B., Müller, K.-R.: A maxmin approach to optimize spatial filters for EEG single-trial classification. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 674–682. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02478-8_84

    Chapter  Google Scholar 

  13. Kübler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90–100 (2009). https://doi.org/10.1111/j.1749-6632.2008.04122.x

    Article  Google Scholar 

  14. Kübler, A., et al.: Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10), 1775–1777 (2005). https://doi.org/10.1212/01.WNL.0000158616.43002.6D

    Article  Google Scholar 

  15. Ledoit, O., Wolf, M.: Honey, I shrunk the sample covariance matrix. J. Portfolio Manag. 30(4), 110–119 (2004). https://doi.org/10.3905/jpm.2004.110

    Article  Google Scholar 

  16. Ledoit, O., Wolf, M., et al.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004)

    Article  MathSciNet  Google Scholar 

  17. Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 53(12), 2610–2614 (2006). https://doi.org/10.1109/TBME.2006.886577

    Article  Google Scholar 

  18. Lorenz, R., Pascual, J., Blankertz, B., Vidaurre, C.: Towards a holistic assessment of the user experience with hybrid BCIs. J. Neural Eng. 11(3), 035007 (2014)

    Article  Google Scholar 

  19. McFarland, D.J., Wolpaw, J.R.: Brain-computer interface operation of robotic and prosthetic devices. Computer 41(10), 52–56 (2008). https://doi.org/10.1109/MC.2008.409

    Article  Google Scholar 

  20. Nakanishi, M., Wang, Y., Chen, X., Wang, Y.T., Gao, X., Jung, T.P.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104–112 (2017). https://doi.org/10.1109/TBME.2017.2694818

    Article  Google Scholar 

  21. Nan, W., et al.: A comparison of minimum energy combination and canonical correlation analysis for SSVEP detection. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering, pp. 469–472. IEEE (2011). https://doi.org/10.1109/NER.2011.5910588

  22. Nierhaus, T., Vidaurre, C., Sannelli, C., Mueller, K.R., Villringer, A.: Immediate brain plasticity after one hour of brain-computer interface (BCI). J. Physiol. (2019). https://doi.org/10.1113/JP278118

    Article  Google Scholar 

  23. Nijholt, A., Bos, D.P.O., Reuderink, B.: Turning shortcomings into challenges: brain-computer interfaces for games. Entertain. Comput. 1(2), 85–94 (2009). https://doi.org/10.1016/j.entcom.2009.09.007

    Article  Google Scholar 

  24. Perez, J.L.M., Cruz, A.B.: Linear discriminant analysis on brain computer interface. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–6. IEEE (2007). https://doi.org/10.1109/WISP.2007.4447590

  25. Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006). https://doi.org/10.1016/j.neuroimage.2005.12.003

    Article  Google Scholar 

  26. Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain-computer interface-a new communication device for handicapped persons. J. Microcomput. Appl. 16(3), 293–299 (1993). https://doi.org/10.1006/jmca.1993.1030

    Article  Google Scholar 

  27. Saa, J.F.D., Gutierrez, M.S.: EEG signal classification using power spectral features and linear discriminant analysis: a brain computer interface application. In: Eighth Latin American and Caribbean Conference for Engineering and Technology, pp. 1–7. LACCEI, Arequipa (2010)

    Google Scholar 

  28. Sannelli, C., Vidaurre, C., Müller, K.R., Blankertz, B.: A large scale screening study with a SMR-based BCI: categorization of BCI users and differences in their SMR activity. PLoS One 14(1) (2019). https://doi.org/10.1371/journal.pone.0207351

  29. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005). https://doi.org/10.2202/1544-6115.1175

  30. Sellers, E.W., Krusienski, D.J., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 73(3), 242–252 (2006). https://doi.org/10.1016/j.biopsycho.2006.04.007

    Article  Google Scholar 

  31. Srinivasan, R., Bibi, F.A., Nunez, P.L.: Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency. Brain Topogr. 18(3), 167–187 (2006). https://doi.org/10.1007/s10548-006-0267-4

    Article  Google Scholar 

  32. Vecchiato, G., et al.: The study of brain activity during the observation of commercial advertsing by using high resolution EEG techniques. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 57–60. IEEE (2009). https://doi.org/10.1109/IEMBS.2009.5335045

  33. Vidaurre, C., Klauer, C., Schauer, T., Ramos-Murguialday, A., Mueller, K.R.: EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med. Eng. Phys. 38, 1195–1204 (2016). https://doi.org/10.1016/j.medengphy.2016.06.010

    Article  Google Scholar 

  34. Vidaurre, C., Murguialday, A.R., Haufe, S., Gómez, M., Müller, K.R., Nikulin, V.V.: Enhancing sensorimotor BCI performance with assistive afferent activity: an online evaluation. NeuroImage 199, 375–386 (2019). https://doi.org/10.1016/j.neuroimage.2019.05.074

    Article  Google Scholar 

  35. Vidaurre, C., et al.: Neuromuscular electrical stimulation induced brain patterns to decode motor imagery. Clin. Neurophysiol. 124(9), 1824–1834 (2013). https://doi.org/10.1016/j.clinph.2013.03.009

    Article  Google Scholar 

  36. Vidaurre, C., Sannelli, C., Müller, K.-R., Blankertz, B.: Machine-learning based co-adaptive calibration: a perspective to fight BCI illiteracy. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS (LNAI), vol. 6076, pp. 413–420. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13769-3_50

    Chapter  Google Scholar 

  37. Vidaurre, C., Krämer, N., Blankertz, B., Schlögl, A.: Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Netw. 22(9), 1313–1319 (2009). https://doi.org/10.1016/j.neunet.2009.07.020

    Article  Google Scholar 

  38. Vidaurre, C., Scherer, R., Cabeza, R., Schlögl, A., Pfurtscheller, G.: Study of discriminant analysis applied to motor imagery bipolar data. Med. Biol. Eng. Comput. 45(1), 61 (2007). https://doi.org/10.1007/s11517-006-0122-5

    Article  Google Scholar 

  39. Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain-computer interfaces based on visual evoked potentials. IEEE Eng. Med. Biol. Mag. 27(5), 64–71 (2008). https://doi.org/10.1109/MEMB.2008.923958

    Article  Google Scholar 

  40. Wang, Y., Wang, R., Gao, X., Hong, B., Gao, S.: A practical VEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 234–240 (2006). https://doi.org/10.1109/TNSRE.2006.875576

    Article  Google Scholar 

  41. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  42. Yin, E., Zhou, Z., Jiang, J., Yu, Y., Hu, D.: A dynamically optimized SSVEP brain-computer interface (BCI) speller. IEEE Trans. Biomed. Eng. 62(6), 1447–1456 (2014). https://doi.org/10.1109/TBME.2014.2320948

    Article  Google Scholar 

  43. Zhang, R., Xu, P., Guo, L., Zhang, Y., Li, P., Yao, D.: Z-score linear discriminant analysis for EEG based brain-computer interfaces. PLoS One 8(9) (2013). https://doi.org/10.1371/journal.pone.0074433

  44. Zhang, Y., Zhou, G., Jin, J., Wang, M., Wang, X., Cichocki, A.: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 887–896 (2013). https://doi.org/10.1109/TNSRE.2013.2279680

    Article  Google Scholar 

  45. Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int. J. Neural Syst. 24(04), 1450013 (2014). https://doi.org/10.1142/S0129065714500130

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Zafer İşcan for partly sharing code and to Mina Jamshidi and Vadim V. Nikulin for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Vidaurre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jorajuría, T., Gómez, M., Vidaurre, C. (2020). A Fast SSVEP-Based Brain-Computer Interface. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics