Skip to main content

An Adaptive Neighborhood Retrieval Visualizer

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12344))

Included in the following conference series:

  • 990 Accesses

Abstract

We propose a novel adaptive version of the Neighborhood Retrieval Visualizer (NeRV). The data samples’ neighborhood widths are determined on the basis of the data scattering in the high-dimensional input space. The scattering of input data is measured using the inner-cluster variance quantity, obtained as a result of the preliminary data clustering in the input space. The combination of the pre-clustering and the subsequent NeRV projection can be recognized as a hybrid approach. The experimental study carried out on two different real datasets verified and confirmed the effectiveness of the introduced approach and the correctness of the theoretical claim of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  2. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). http://circ.ahajournals.org/cgi/content/full/101/23/e215, circulation Electronic Pages

  3. Ippoliti, D., Zhou, X.: A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection. J. Parallel Distrib. Comput. 72(12), 1576–1590 (2012)

    Article  Google Scholar 

  4. Kohonen, T.: The self-organizing map. Proc. IEEE 28, 1464–1480 (1990)

    Article  Google Scholar 

  5. Koringa, P.A., Mitra, S.K.: L1-norm orthogonal neighbourhood preserving projection and its applications. Pattern Anal. Appl. 22(4), 1481–1492 (2019)

    Article  MathSciNet  Google Scholar 

  6. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  7. Lu, Y., Lai, Z., Li, X., Wong, W.K., Yuan, C., Zhang, D.: Low-Rank 2-D neighborhood preserving projection for enhanced robust image representation. IEEE Trans. Cybern. 49(5), 1859–1872 (2019)

    Article  Google Scholar 

  8. Olszewski, D.: Asymmetric k-Means algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_1

    Chapter  Google Scholar 

  9. Olszewski, D.: An experimental study on asymmetric self-organizing map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23878-9_6

    Chapter  Google Scholar 

  10. Olszewski, D.: k-Means clustering of asymmetric data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 243–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28942-2_22

    Chapter  Google Scholar 

  11. Olszewski, D., Kacprzyk, J., Zadrożny, S.: Time series visualization using asymmetric self-organizing map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 40–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_5

    Chapter  Google Scholar 

  12. Olszewski, D., Šter, B.: Asymmetric clustering using the alpha-beta divergence. Pattern Recogn. 47(5), 2031–2041 (2014)

    Article  Google Scholar 

  13. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 13(6), 1331–1341 (2002)

    Article  Google Scholar 

  14. Tian, Z., Dey, N., Ashour, A.S., McCauley, P., Shi, F.: Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural Comput. Appl. 30(12), 3733–3748 (2017). https://doi.org/10.1007/s00521-017-2955-2

    Article  Google Scholar 

  15. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Olszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olszewski, D. (2020). An Adaptive Neighborhood Retrieval Visualizer. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics