Skip to main content
Book cover

Tuco-Tucos pp 221–247Cite as

Ecological Physiology and Behavior in the Genus Ctenomys

Abstract

The understanding of the diversity of behavioral and physiological responses associated with the challenges of underground life requires expanding our attention to groups of underground rodents that have not yet been considered in detail. Here we review data published in the genus Ctenomys considering behavioral and physiological responses to underground environmental conditions and food resources, as well as those exploring interactions with conspecific and heterospecific individuals. A wide scope of topics was covered, namely: (a) sensory biology; (b) stress response and individual condition; (c) energy, water balance, and thermoregulation; (d) intraspecific interactions, specifically, physiology, and behavior of territorial defense and reproduction; and (e) interspecific interactions, in particular, physiology and behavior of predator avoidance and immune defense against parasites and pathogens. The species studied represent only a quarter of the diversity of the genus, and several topics were assessed almost exclusively in C. talarum, which makes it difficult to identify general response patterns. However, while some patterns found regarding physiological and behavioral responses are clearly in accordance with what is expected for underground rodents, others are affected by different degrees of use of the underground habitat that characterize this genus.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   109.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   109.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Altuna CA, Francescoli G, Izquierdo G (1991) Copulatory pattern of Ctenomys pearsoni (Rodentia, Octodontidae) from Balneario Solís, Uruguay. Mammalia 55:316–317

    Google Scholar 

  • Altuna CA, Bacigalupe LD, Corte S (1998) Food-handling and feces reingestion in Ctenomys pearsoni (Rodentia, Ctenomyidae). Acta Theriol 43:433–437

    Article  Google Scholar 

  • Amaya JP, Areta JI, Valentinuzzi VS, Zufiaurre E (2016) Form and function of long-range vocalizations in a Neotropical fossorial rodent: the Anillaco Tuco-Tuco (Ctenomys sp). PeerJ 4:e2559

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Book  Google Scholar 

  • Antenucci CD, Zenuto RR, Luna F, Cutrera AP, Perissinotti PP, Busch C (2007) Energy budget in subterranean rodents: insights from the Tuco-tuco Ctenomys talarum (Rodentia: Ctenomyidae). In: Kelt DA, Lessa E, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, Berkeley, pp 111–139

    Google Scholar 

  • Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Z Säugetierkd 57:163–168

    Google Scholar 

  • Armario A (2006) The hypothalamic–pituitary–adrenal axis: what can it tell us about stressors? CNS Neurol Disord 5:485–501

    Article  Google Scholar 

  • Balbontín J, Reig S, Moreno S (1996) Evolutionary relationships of Ctenomys (Rodentia: Octodontidae) from Argentina, based on penis morphology. Acta Theriol 41:237–253

    Article  Google Scholar 

  • Baldo MB, Luna F, Schleich CE, Antenucci CD (2014) Thermoregulatory development and behavior of Ctenomys talarum pups during brief repeated postnatal isolation. Comp Biochem Physiol A 173:35–41

    Article  CAS  Google Scholar 

  • Baldo MB, Antenucci CD, Luna F (2015) Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum. J Therm Biol 53:113–118

    Article  PubMed  Google Scholar 

  • Baldo MB, Luna F, Antenucci CD (2016) Does acclimation to contrasting atmospheric humidities affect evaporative water loss in the South American subterranean rodent Ctenomys talarum? J Mammal 97:1312–1320

    Article  Google Scholar 

  • Baldo MB, Antenucci CD (2019) Diet efect on osmoregulation in the subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 235:148–158

    Article  CAS  Google Scholar 

  • Begall S, Lange S, Schleich CE, Burda H (2007) Acoustics, audition and auditory system. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Heidelberg, pp 113–128

    Chapter  Google Scholar 

  • Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, Cambridge

    Google Scholar 

  • Boonstra R (2005) Equipped for life: the adaptive role of the stress axis in male mammals. J Mammal 86:236–247

    Article  Google Scholar 

  • Bozinovic F, Gallardo P (2006) The water economy of South American desert rodents: from integrative to molecular physiological ecology. Comp Biochem Physiol 142:163–172

    Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2014) Effects of acute and chronic exposure to predatory cues on spatial learning capabilities in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae). Ethology 120:563–576

    Article  Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2015) Short-term anxiety response of the subterranean rodent Ctenomys talarum to odors from a predator. Physiol Behav 151:596–603

    Article  CAS  PubMed  Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2016) Source odor, intensity, and exposure pattern affect antipredatory responses in the subterranean rodent Ctenomys talarum. Ethology 122:923–936

    Article  Google Scholar 

  • Brachetta V, Schleich CE, Cutrera AP, Merlo JL, Kittlein MJ, Zenuto RR (2018) Prenatal predatory stress in a wild species of subterranean rodent: do ecological stressors always have a negative effect on the offspring? Dev Psychobiol 60:567–581

    Article  CAS  PubMed  Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2019a) Feeding behavior under predatory risk in Ctenomys talarum: nutritional state and recent experience of a predatory event. Mamm Res 64:261–269

    Article  Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2019b) Differential antipredatory responses in the tuco-tuco (Ctenomys talarum) in relation to endogenous and exogenous changes in GCs. J Comp Physiol A 206(1):33–44. https://doi.org/10.1007/s00359-019-01384-8

    Article  Google Scholar 

  • Buffenstein RM (2000) Ecophysiological responses of subterranean rodents to an underground habitat. In: Lacey E, Patton J, Cameron G (eds) Life underground: biology of subterranean rodents. University of Chicago Press, Chicago, pp 62–109

    Google Scholar 

  • Busch C (1987) Haematological correlates of burrowing in Ctenomys. Comp Biochem Physiol A 86:461–463

    Article  CAS  PubMed  Google Scholar 

  • Busch C (1989) Metabolic rate and thermoregulation in two species of tuco-tuco, Ctenomys talarum and Ctenomys australis (Caviomorpha, Octodontidae). Comp Biochem Physiol A 93(2):345–347

    Article  CAS  PubMed  Google Scholar 

  • Busch C, Malizia AI, Scaglia OA, Reig OA (1989) Spatial distribution and attributes of a population of Ctenomys talarum (Rodentia: Octodontidae). J Mammal 70:204–208

    Article  Google Scholar 

  • Busch C, Antinuchi D, Del Valle J, Kittlein M, Malizia A, Vassallo A, Zenuto R (2000) Population ecology of subterranean rodents. In: Lacey E, Patton J, Cameron G (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 183–226

    Google Scholar 

  • Camín S (1999) Mating behaviour of Ctenomys mendocinus (Rodentia, Ctenomyidae). Mamm Biol 64:230–238

    Google Scholar 

  • Camín S (2010) Gestation, maternal behaviour, growth and development in the subterranean caviomorph rodent Ctenomys mendocinus (Rodentia, Hystricognathi, Ctenomyidae). Anim Biol 60:79–95

    Article  Google Scholar 

  • Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253

    Article  PubMed  Google Scholar 

  • Charbonnel N, de Bellocq JG, Morand S (2006) Immunogenetics of micromammal macroparasite interactions. In: Micromammals and macroparasites. Springer, Tokyo, pp 401–442

    Chapter  Google Scholar 

  • Clinchy M, Sheriff MJ, Zanette LY (2013) The ecology of stress: predator-induced stress and the ecology of fear. Funct Ecol 27:56–65

    Article  Google Scholar 

  • Cortés A, Rosenmann M, Bozinovic F (2000) Water economy in rodents: evaporative water loss and metabolic water production. Rev Chil Hist Nat 73:311–321

    Article  Google Scholar 

  • Cutrera AP, Antinuchi CD (2004) Cambios en el pelaje del roedor subterráneo Ctenomys talarum: posible mecanismo térmico compensatorio. Rev Chil Hist Nat 77:235–242

    Article  Google Scholar 

  • Cutrera AP, Lacey EA (2006) Major histocompatibility complex variation in talas tuco-tucos: the influence of demography on selection. J Mammal 87:706–716

    Article  Google Scholar 

  • Cutrera AP, Lacey EA (2007) Trans-species polymorphism and evidence of selection on class II MHC loci in tuco-tucos (Rodentia: Ctenomyidae). Immunogenetics 59:937–948

    Article  CAS  PubMed  Google Scholar 

  • Cutrera AP, Mora MS (2017) Selection on MHC in a context of historical demographic change in 2 closely distributed species of tuco-tucos (Ctenomys australis and C. talarum). J Hered 108:628–639

    Article  PubMed  Google Scholar 

  • Cutrera AP, Antinuchi CD, Busch C (2003) Thermoregulatory development in pups of the subterranean rodent Ctenomys talarum. Physiol Behav 79:321–330

    Article  CAS  PubMed  Google Scholar 

  • Cutrera AP, Mora MS, Antenucci CD, Vassallo AI (2010a) Intra-and interspecific variation in home-range size in sympatric tuco-tucos, Ctenomys australis and C talarum. J Mammal 91:1425–1434

    Article  Google Scholar 

  • Cutrera AP, Zenuto RR, Luna F, Antenucci CD (2010b) Mounting a specific immune response increases energy expenditure of the subterranean rodent Ctenomys talarum (tuco-tuco): implications for intraspecific and interspecific variation in immunological traits. J Exp Biol 213:715–724

    Article  CAS  PubMed  Google Scholar 

  • Cutrera AP, Zenuto RR, Lacey EA (2011) MHC variation, multiple simultaneous infections and physiological condition in the subterranean rodent Ctenomys talarum. Infect Genet Evol 11:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Cutrera AP, Fanjul MS, Zenuto RR (2012) Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim Behav 83:847–856

    Article  Google Scholar 

  • Cutrera AP, Zenuto RR, Lacey EA (2014a) Interpopulation differences in parasite load and variable selective pressures on MHC genes in Ctenomys talarum. J Mammal 95:679–695

    Article  Google Scholar 

  • Cutrera AP, Luna F, Merlo JL, Baldo MB, Zenuto RR (2014b) Assessing the energetic costs and trade-offs of a PHA-induced inflammation in the subterranean rodent Ctenomys talarum: immune response in growing tuco-tucos. Comp Biochem Physiol A 174:23–28

    Article  CAS  Google Scholar 

  • Clutton-Brock TH (1989) Mammalian mating systems. Proc R Soc B 236:339–372

    CAS  Google Scholar 

  • Davis AK, Maney DL (2008) The use of glucocorticoid hormonesor leucocyte profles to measure stress in vertebrates: what’s the diference? Methods Ecol Evol 8:1556–1568

    Google Scholar 

  • Davis AK, Maney DL (2018) The use of leukocyte profles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • del Valle JC, López Mañanes AA (2008) Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 150:387–394

    Article  CAS  Google Scholar 

  • del Valle JC, López Mañanes AA (2011) Digestive flexibility in females of the subterranean rodent Ctenomys talarum in their natural habitat. J Exp Zool A 315A:141–148

    Article  CAS  Google Scholar 

  • Demas GE, Nelson RJ (2012) Introduction to ecoimmunology. In: Demas GE, Nelson RJ (eds) Ecoimmunology. Oxford University Press, New York, pp 3–6

    Google Scholar 

  • Demas G, Greives T, Chester E, French S (2012) The energetics of immunity. In: Demas GE, Nelson RJ (eds) Ecoimmunology. Oxford University Press, New York, pp 259–296

    Google Scholar 

  • Dickens MJ, Romero LM (2013) A consensus endocrine profile for chronically stressed wild animals does not exist. Gen Comp Endocrinol 191:177–189

    Article  CAS  PubMed  Google Scholar 

  • Diaz GB (2001) Ecofisiología de Pequeños Mamíferos de Las Tierras Áridas de Argentina: Adaptaciones Renales. Universidad Nacional de Cuyo, Mendoza Argentina, Doctoral Thesis

    Google Scholar 

  • Diaz GB, Ojeda RA, Rezende EL (2006) Renal morphology, phylogenetic history and desert adaptation of South American hystricognath rodents. Funct Ecol 20:609–620

    Article  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50

    Article  CAS  PubMed  Google Scholar 

  • El Jundi TARJ, de Freitas TRO (2004) Genetic and demographic structure in a population of Ctenomys lami (Rodentia-Ctenomyidae). Hereditas 140:18–23

    Google Scholar 

  • Fanjul MS, Zenuto RR (2008a) Copulatory pattern of the subterranean rodent Ctenomys talarum. Mammalia 72(2):102–108

    Google Scholar 

  • Fanjul MS, Zenuto RR (2008b) Female reproductive responses to photoperiod and male odours in the subterranean rodent Ctenomys talarum. Acta Theriol 53:73–85

    Article  Google Scholar 

  • Fanjul MS, Zenuto RR (2012) Female reproductive behaviour, ovarian hormones and vaginal cytology of the induced ovulator, Ctenomys talarum. Acta Theriol 57:15–27

    Article  Google Scholar 

  • Fanjul MS, Zenuto RR (2013) When allowed, females prefer novel males in the polygynous subterranean rodent Ctenomys talarum (tuco-tuco). Behav Process 92:71–78

    Article  Google Scholar 

  • Fanjul MS, Zenuto RR (2017) Female choice, male dominance and condition-related traits in the polygynous subterranean rodent Ctenomys talarum. Behav Process 142:46–55

    Article  CAS  Google Scholar 

  • Fanjul MS, Zenuto RR, Busch C (2003) Use of olfaction for sexual recognition in the subterranean rodent Ctenomys talarum. Acta Theriol 48:35–46

    Google Scholar 

  • Fanjul MS, Zenuto RR, Busch C (2006) Seasonality of breeding in wild tuco-tucos Ctenomys talarum in relation to climate and food availability. Acta Theriol 51:283–293

    Article  Google Scholar 

  • Fanjul MS, Varas MF, Zenuto RR (2018) Female preference for males that have exclusively marked or invaded territories depends on male presence and its identity in the subterranean rodent Ctenomys talarum. Ethology 124:579–590

    Article  Google Scholar 

  • Fernández-Stolz GP, Stolz JFB, de Freitas TRO (2007) Bottlenecks and dispersal in the Tuco-Tuco Das Dunas, Ctenomys flamarioni (Rodentia: Ctenomyidae), in Southern Brazil. J Mammal 88:935–945

    Article  Google Scholar 

  • Francescoli G (1999) A preliminary report on the acoustic communication in Uruguayan Ctenomys (Rodentia, Octodontidae): basic sounds types. Bioacoustics 103:203–218

    Article  Google Scholar 

  • Francescoli G (2000) Sensory capabilities and communication in subterranean rodents. In: Lacey E, Patton J, Cameron G (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 111–144

    Google Scholar 

  • Francescoli G (2001) Vocal signals from Ctenomys pearsoni pups. Acta Theriol 46:327–330

    Google Scholar 

  • Francescoli G (2002) Geographic variation in vocal signals of Ctenomys pearsoni. Acta Theriol 47:35–44

    Article  Google Scholar 

  • Francescoli G (2011) Tuco-tucos’ vocalization output varies seasonally (Ctenomys pearsoni; Rodentia, Ctenomyidae): implications for reproductive signaling. Acta Ethol 14:1–6

    Article  Google Scholar 

  • Francescoli G (2017) Environmental factors could constrain the use of long-range vocal signals in solitary tuco-tucos (Ctenomys; Rodentia, Ctenomyidae) reproduction. J Ecoacoust 1:R7YFP0

    Article  Google Scholar 

  • Francescoli G, Quirici V (2010) Two different vocalization patterns in Ctenomys (Rodentia, Octodontidae) territorial signals. Mastozool Neotropical 17:141–145

    Google Scholar 

  • Garcias FM, Stolz JFB, Fernández GP, Kubiak BB, Bastazini VAG, de Freitas TRO (2018) Environmental predictors of demography in the tuco-tuco of the dunes (Ctenomys flamarioni). Mastozool Neotropical 25(2):293–305. https://doi.org/10.31687/saremMN.18.25.2.0.18

    Article  Google Scholar 

  • Hambuch TM, Lacey EA (2002) Enhanced selection for MHC diversity in social tuco-tucos. Evolution 56:841–845

    PubMed  Google Scholar 

  • Hohtola E (2002) Facultative and obligatory thermogenesis in young birds: a cautionary note. Comp Biochem Physiol A 131:733–739

    Article  Google Scholar 

  • Hulbert AJ, Else PL (2004) Basal metabolic rate: history, composition, regulation, and usefulness. Physiol Biochem Zool 77:869–876

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo G, Lacey EA (2008) Effects of group size on nest attendance in the communally breeding colonial tuco-tuco. Mamm Biol 73:438–443

    Article  Google Scholar 

  • Karasov WH (1986) Energetics, physiology and vertebrate ecology. Trends Ecol Evol 1:101–104

    Article  CAS  PubMed  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Kubiak BB, Galiano D, de Freitas TRO (2017) Can the environment influence species home-range size? A case study on Ctenomys minutus (Rodentia, Ctenomyidae). J Zool 302:171–177

    Article  Google Scholar 

  • Lacey EA (2000) Spatial and social systems of subterranean rodents. In: Lacey E, Patton J, Cameron G (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 257–299

    Google Scholar 

  • Lacey EA (2004) Sociality reduces individual direct fitness in a communally breeding rodent, the colonial tuco-tuco (Ctenomys sociabilis). Behav Ecol Sociobiol 56:449–457

    Article  Google Scholar 

  • Lacey EA, Wieczorek JR (2004) Kinship in colonial tuco-tucos: evidence from group composition and population structure. Behav Ecol 15:988–996

    Article  Google Scholar 

  • Lacey EA, Braude SH, Wieczorek JR (1997) Burrow sharing by colonial Tuco-Tucos (Ctenomys sociabilis). J Mammal 78:556–562

    Article  Google Scholar 

  • Lacey EA, Braude SH, Wieczorek JR (1998) Solitary burrow use by adult Patagonian Tuco-tucos (Ctenomys haigi). J Mammal 79:986–991

    Article  Google Scholar 

  • Lacey EA, Patton JL, Cameron GN (2000) Linking immuneLife underground: the biology of subterranean rodents. University of Chicago Press, Chicago

    Google Scholar 

  • Lacey EA, Cutrera AP (2007) Behavior, demography, and Immunogenetic variation: new insights from subterranean rodents. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Heidelberg

    Google Scholar 

  • Lee KA (2006) Linking immune defences and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015

    Article  CAS  PubMed  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Luna F, Antenucci CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum : effect of soil hardness. Can J Zool 84:661–667

    Article  Google Scholar 

  • Luna F, Antenucci CD (2007a) Effect of tunnel inclination on digging energetics in the tuco-tuco, Ctenomys talarum (Rodentia: Ctenomyidae). Naturwissenschaften 94:100–106

    Article  CAS  PubMed  Google Scholar 

  • Luna F, Antenucci CD (2007b) Energetics and thermoregulation during digging in the rodent tuco-tuco (Ctenomys talarum). Comp Biochem Physiol A 146:559–564

    Article  CAS  Google Scholar 

  • Luna F, Antenucci CD (2007c) Energy and distribution in subterranean rodents: Sympatry between two species of the genus Ctenomys. Comp Biochem Physiol A 147:948–954

    Article  CAS  Google Scholar 

  • Luna F, Antenucci CD, Busch C (2002) Digging energetics in the south American rodent Ctenomys talarum (Rodentia, Ctenomyidae). Can J Zool 80:2144–2149

    Article  Google Scholar 

  • Luna F, Antenucci CD, Bozinovic F (2009) Comparative energetics of the subterranean Ctenomys rodents: breaking patterns. Physiol Biochem Zool 82:226–235

    Article  PubMed  Google Scholar 

  • Luna F, Roca P, Oliver J, Antenucci CD (2012) Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum. J Comp Physiol B 182:971–983

    Article  PubMed  Google Scholar 

  • Luna F, Bozinovic F, Antenucci CD (2015) Macrophysiological patterns in the energetics of Caviomorph rodents: implications in a warming world. In: Vassallo AI, Antenucci CD (eds) The biology of Caviomorph rodents: diversity and evolution, SAREM Series A, pp 245–272

    Google Scholar 

  • Luna F, Naya H, Naya DE (2017) Understanding evolutionary variation in basal metabolic rate: an analysis in subterranean rodents. Comp Biochem Physiol A 206:87–94

    Article  CAS  Google Scholar 

  • Luna F, Sastre-Serra J, Oliver J, Antenucci CD (2019) Thermogenic capacity in subterranean Ctenomys: species-specific role of thermogenic mechanisms. J Therm Biol 80:164–171

    Article  CAS  PubMed  Google Scholar 

  • MacDougall-Shackleton SA, Bonier F, Romero LM, Moore IT (2019) Glucocorticoids an “stress” are not synonymous. Integrat Organ Biol 1:obz017. https://doi.org/10.1093/iob/obz017

    Article  Google Scholar 

  • Malewski S, Begall S, Schleich CE, Antenucci CD, Burda H (2018) Do subterranean mammals use the Earth’s magnetic field as a heading indicator to dig straight tunnels? PeerJ 6:e5819

    Article  PubMed  PubMed Central  Google Scholar 

  • Marinho JR, de Freitas TRO (2006) Population structure of Ctenomys minutus (Rodentia, ctenomyidae) on the coastal plain of Rio Grande do Sul, Brazil. Acta Theriol 51:53–59

    Article  Google Scholar 

  • Martino NS, Zenuto RR, Busch C (2007) Nutritional responses to different diet quality in the subterranean rodent Ctenomys talarum (tuco-tucos). Comp Biochem Physiol A 147:974–982

    Article  CAS  Google Scholar 

  • Mason MJ (2004) The middle ear apparatus of the tuco-tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). J Mammal 85:797–805

    Article  Google Scholar 

  • Mastrangelo ME, Schleich CE, Zenuto RR (2010) Spatial learning abilities in males and females of Ctenomys talarum. Ethol Ecol Evol 22:101–108

    Article  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. In: Comstock publishing associates. Cornell University Press, Ithaca (New York)

    Google Scholar 

  • Merlo JL, Cutrera AP, Luna F, Zenuto RR (2014) PHA-induced inflammation is not energetically costly in the subterranean rodent Ctenomys talarum (tuco-tucos). Comp Biochem Physiol A Mol Integr Physiol 175:90–95

    Article  CAS  PubMed  Google Scholar 

  • Merlo J, Cutrera AP, Zenuto RR (2016a) Food restriction affects inflammatory response and nutritional state in Tuco-tucos (Ctenomys talarum). J Exp Zool A Ecol Genet Physiol 325:675–687

    Article  CAS  PubMed  Google Scholar 

  • Merlo J, Cutrera AP, Zenuto RR (2016b) Parasite infection negatively affects PHA-triggered inflammation in the subterranean rodent Ctenomys talarum. J Exp Zool A Ecol Genet Physiol 325:132–141

    Article  CAS  PubMed  Google Scholar 

  • Merlo JE, Cutrera AP, Kittlein MJ, Zenuto RR (2018) Individual condition and inflammatory response to PHA in the subterranean rodent Ctenomys talarum (Talas tuco-tuco): a multivariate approach. Mamm Biol 90:47–54

    Article  Google Scholar 

  • Merlo J, Cutrera AP, Zenuto RR (2019) Assessment of trade-offs between simultaneous immune challenges in a slow-living subterranean rodent. Physiol Biochem Zool 92:92–105

    Article  PubMed  Google Scholar 

  • Meroi F, Luna F, Antenucci CD (2014) Variación estacional de la tasa metabólica de reposo en Ctenomys talarum (Rodentia, Ctenomyidae): Ausencia de efectos ambientales. Mastozool Neotropical 21:241–250

    Google Scholar 

  • Milligan SR (1982) Induced ovulation in mammals. In: Finn CA (ed) Oxford reviews of reproductive biology. Clarendon Press, Oxford

    Google Scholar 

  • Milot E, Cohen AA, Vézina F, Buehler DM, Matson KD, Piersma T (2014) A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation. Methods Ecol Evol 5:146–155

    Article  Google Scholar 

  • Mitani JC, Gros-Louis J, Richards AF (1996) Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. Am Nat 147:966–980

    Article  Google Scholar 

  • Moll RJ, Redilla KM, Mudumba T, Muneza AB, Gray SM, Abade L, Hayward MW, Millspaugh JJ, Montgomery RA (2017) The many faces of fear: a synthesis of the methodological variation in characterizing predation risk. J Anim Ecol 86:749–765

    Article  PubMed  Google Scholar 

  • Müller C, Jenni-Eiermann S, Jenni L (2011) Heterophils/lymphocytesratio and circulating corticosterone do not indicate the same stressimposed on Eurasian kestrel nestlings. Funct Ecol 25:566–576

    Article  Google Scholar 

  • Naya DE, Spangenberg L, Naya H, Bozinovic F (2013) Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation. Proc R Soc B Biol Sci 280:20131629

    Article  Google Scholar 

  • Nevo E (1999) Mosaic evolution of subterranean mammals: regression, progression, and global convergence. Oxford University Press, Oxford/New York

    Google Scholar 

  • Nevo E, Reig OA (1990) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York

    Google Scholar 

  • Nevo E, Ivanitskaya E, Beiles A (2001) Adaptive radiation of blind subterranean mole rats. Backhuys, Leiden

    Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Ann Rev Ecol Syst 10:269–308

    Article  Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • O’Brien SL, Tammone MN, Cuello PA, Lacey EA (2020) Facultative sociality in a subterranean rodent, the highland tuco-tuco (Ctenomys opimus). Biol J Linn Soc 129:918–930

    Article  Google Scholar 

  • Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammal fo Soth América, vol 2. The University of Chicago Press, Chicago, p 1336

    Google Scholar 

  • Pearson OP (1959) Biology of the subterranean rodents, Ctenomys in Perú. Mem Mus Hist Nat Javier Prado 9:1–56

    Google Scholar 

  • Pearson OP, Christie MI (1985) Los tuco-tucos (género Ctenomys) de los parques nacionales Lanín yNahuel Huapi, Argentina. Hist Nat 5:337–343

    Google Scholar 

  • Perissinotti PP, Antenucci CD, Zenuto RR, Luna F (2009) Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 154:298–307

    Article  CAS  Google Scholar 

  • Puig S, Rosi MI, Videla F, Roig VG (1992) Estudio ecológico del roedor subterráneo Ctenomys mendocinus en la precordillera de Mendoza, Argentina: densidad poblacional y uso del espacio. Rev Chil Hist Nat 65:247–254

    Google Scholar 

  • Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology, and speciations in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York

    Google Scholar 

  • Rocha-Barbosa O, Bernardo JSL, Loguercio MFC, de Freitas TRO, Santos-Mallet JR, Bidau CJ (2013) Penial morphology in three species of Brazilian Tuco-tucos, Ctenomys torquatus, C. minutus, and C. flamarioni (Rodentia: Ctenomyidae). Braz J Biol 73:201–209

    Article  CAS  PubMed  Google Scholar 

  • Rosi MI, Puig S, Videla F, Madoery L, Roig VG (1992) Estudio ecológico del roedor subterráneo Ctenomys mendocinus en la precordillera de Mendoza, Argentina: ciclo reproductivo -y estructura etaria. Rev Chil Hist Nat 65:221–223

    Google Scholar 

  • Rosi MI, Puig S, Videla F, Cona MI, Roig VG (1996) Cielo reproductivo y estructura etaria de Ctenomys mendocinus (Rodentia, Ctenomyidae) del Piedemonte de Mendoza, Argentina. Ecol Aust 6:87–93

    Google Scholar 

  • Rosi MI, Cona MI, Roig VG, Massarini AI, Verzi DH (2005) Ctenomys mendocinus. Mamm Species 777:1–6

    Article  Google Scholar 

  • Rossin A, Malizia AI (2002) Relationship between helminth parasites and demographic attributes of a population of the subterranean rodent Ctenomys talarum (Rodentia: Octodontidae). J Parasitol 88:1268–1270

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Schleich CE, Antenucci CD (2004) Testing magnetic orientation in a solitary subterranean rodent Ctenomys talarum (Rodentia: Octodontidae). Ethology 110:485–495

    Article  Google Scholar 

  • Schleich CE, Busch C (2002) Acoustic signals of a solitary subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae): physical characteristics and behavioural correlates. J Ethol 20:123–131

    Article  Google Scholar 

  • Schleich C, Busch C (2004) Energetic expenditure during vocalization in pups of the subterranean rodent Ctenomys talarum. Naturwissenschaften 91:548–551

    Article  CAS  PubMed  Google Scholar 

  • Schleich CE, Zenuto RR (2007) Use of vegetation chemical signals for digging orientation in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae). Ethology 113:573–578

    Article  Google Scholar 

  • Schleich CE, Veitl S, Knotková E, Begall S (2007) Acoustic communication in subterranean rodents. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69276-8_10

    Chapter  Google Scholar 

  • Schleich CE, Zenuto RR (2010) Testing detection and discrimination of vegetation chemical signals in the subterranean rodent Ctenomys talarum. Ethol Ecol Evol 22:257–264

    Article  Google Scholar 

  • Schleich CE, Vielma A, Glösmann M, Palacios AG, Peichl L (2010) The retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): morphology, topography and spectral sensitivity. J Comp Neurol 518:400–4015

    Article  Google Scholar 

  • Schleich CE, Zenuto RR, Cutrera AP (2015) Immune challenge but not dietary restriction affects spatial learning in the wild subterranean rodent Ctenomys talarum. Physiol Behav 139:150–156

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press

    Google Scholar 

  • Schoenle LA, Downs CJ, Martin LB (2018) An introduction to ecoimmunology. In: Advances in comparative immunology. Springer, Cham, pp 901–932

    Chapter  Google Scholar 

  • Schwanz LE, Lacey EA (2003) Olfactory discrimination of gender by colonial tuco-tucos (Ctenomys sociabilis). Mamm Biol 68:53–60

    Article  Google Scholar 

  • Scott G (2005) Essential animal behavior. Blackwell, Hoboken

    Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Sherman PW, Jarvis JUM, Alexander RD (1991) The biology of the naked mole-rat. Princeton University Press, Princeton

    Google Scholar 

  • Stamps JA (2007) Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol Lett 10:355–363

    Article  PubMed  Google Scholar 

  • Tachinardi P, Bicudo JEW, Oda GA, Valentinuzzi VS (2014) Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS One 9:e85674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tachinardi P, Valentinuzzi VS, Oda GA, Buck CL (2017) The interplay of energy balance and daily timing of activity in a subterranean rodent: a laboratory and field approach. Physiol Biochem Zool 90:546–552

    Article  PubMed  Google Scholar 

  • Talice RV, Laffitte de Mosera S (1958) Parto, comportamiento maternal y comportamiento filial en Ctenomys torquatus (“Tucu Tucu”). Revista de la Facultad de Humanidades y Ciencias, Universidad de la República. Montevideo 16:69–75

    Google Scholar 

  • Tassino B, Passos CA (2010) Reproductive biology of Río Negro tuco-tuco, Ctenomys rionegrensis (Rodentia: Octodontidae). Mamm Biol 75:253–260

    Article  Google Scholar 

  • Tassino B, Estevan I, Garbero RP, Altesor P, Lacey EA (2011) Space use by Río Negro tuco-tucos (Ctenomys rionegrensis): excursions and spatial overlap. Mamm Biol 76:143–147

    Article  Google Scholar 

  • Temeles EJ (1994) The role of neighbours in territorial systems: when are they‘dear enemies’? Anim Behav 47:339–350

    Article  Google Scholar 

  • Tomasco IH, Sánchez L, Lessa EP, Lacey EA (2019) Genetic analyses suggest burrow sharing by Río Negro tuco-tucos (Ctenomys rionegrensis). Mastozool Neotropical 26:430–439

    Article  Google Scholar 

  • Tomasi TE, Horton TH (1992) Mammalian energetics: interdisciplinary views of metabolism and reproduction. Comstock Publishing Associates, Ithaca/New York

    Google Scholar 

  • Tomotani BM, Flores DEFL, Tachinardi P, Paliza JD, Oda GA, Valentinuzzi VS (2012) Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the Tuco-Tuco. PLoS One 7:e37918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentinuzzi VS, Oda GA, Araújo JF, Ralph MR (2009) Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii). Chronobiol Int 26:14–27

    Article  PubMed  Google Scholar 

  • Vassallo A, Busch C (1992) Interspecific agonism between two sympatric species of Ctenomys (Rodentia: Octodontidae) in captivity. Behaviour 120:40–50

    Article  Google Scholar 

  • Vassallo A, Kittlein M, Busch C (1994) Owl predation on two sympatric species of tuco tucos (Rodentia: Octodontidae). J Mammal 75:725–732

    Article  Google Scholar 

  • Vega-Zuniga T, Medina F, Marin G, Letelier JC, Palacios AG, Němec P, Schleich CE, Mpodozis J (2017) Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum. Sci Rep 7:41704. https://doi.org/10.1038/srep41704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera F, Antenucci CD, Zenuto RR (2011a) Cortisol and corticosterone exhibit different seasonal variation and responses to acute stress and captivity in tuco-tucos (Ctenomys talarum). Gen Comp Endocrinol 170:550–557

    Article  CAS  PubMed  Google Scholar 

  • Vera F, Zenuto RR, Antenucci CD, Busso JM, Marín RH (2011b) Validation of a radioimmunoassay for measuring testosterone concentrations in plasma samples of the subterranean rodent Ctenomys talarum: outstandingly-elevated levels in the wild and the effect of captivity. J Exp Zool A 315:572–583

    Article  CAS  Google Scholar 

  • Vera F, Zenuto RR, Antenucci CD (2012) Differential responses of cortisol and corticosterone to adrenocorticotropic hormone (ACTH) in a subterranean rodent (Ctenomys talarum). J Exp Zool A 317:173–184

    Article  CAS  Google Scholar 

  • Vera F, Zenuto RR, Antenucci CD (2013) Seasonal variations in plasma cortisol, testosterone, progesterone and leukocyte profiles in a wild population of tuco-tucos. J Zool 289:111–118

    Article  Google Scholar 

  • Vera F, Antenucci CD, Zenuto RR (2018) Different regulation of cortisol and corticosterone in the subterranean rodent Ctenomys talarum: responses to dexamethasone, angiotensin II, potassium, and diet. Gen Comp Endocrinol 273:108–117. https://doi.org/10.1016/j.ygcen.2018.05.019

    Article  CAS  PubMed  Google Scholar 

  • Vera F, Antenucci CD, Zenuto RR (2019) Different regulation of cortisol and corticosterone in the subterranean rodent Ctenomys talarum: responses to dexamethasone, angiotensin II, potassium, and diet. Gen Comp Endocrinol 273:108–117.

    Article  CAS  PubMed  Google Scholar 

  • Vorhess CV, Williams MT (2014) Assessing spatial learning and memory in rodents. ILAR J 55:310–332. https://doi.org/10.1093/ilar/ilu013

    Article  CAS  Google Scholar 

  • Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool 52:122–136

    Article  Google Scholar 

  • Weiner J (1992) Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends Ecol Evol 7:384–388

    Article  CAS  PubMed  Google Scholar 

  • Weir BJ (1974) Reproductive characteristics of Hystricomorph Rodents. Symp Zool Soc Lond 34:265–301

    Google Scholar 

  • Wiegert RG (1968) Thermodynamic considerations in animal nutrition. Am Zool 8:71–81

    Article  CAS  PubMed  Google Scholar 

  • Wise PH, Weir BJ, Hime JM, Forrest E (1972) The diabetic syndrome in the tuco-tuco (Ctenomys talarum). Diabetologia 8:165–172

    Article  CAS  PubMed  Google Scholar 

  • Withers PC, Cooper CE, Maloney SK, Bozinovic F, Cruz-Neto A (2016) Ecological and environmental physiology of mammals. Oxford University Press, Oxford

    Book  Google Scholar 

  • Woodruff JA, Lacey EA, Bentley G (2010) Contrasting fecal corticosterone metabolite levels in captive and free-living colonial tuco-tucos (Ctenomys sociabilis). J Exp Zool 313A:498–507

    Article  CAS  Google Scholar 

  • Woodruff JA, Lacey EA, Bentley G, Kriegsfeld LJ (2013) Effects of social environment on baseline glucocorticoid levels in a communally breeding rodent, the colonial tuco-tuco (Ctenomys sociabilis). Horm Behav 64:566–572

    Article  CAS  PubMed  Google Scholar 

  • Zarrow MX, Clark JH (1968) Ovulation following vaginal stimulation in a spontaneous ovulator and its implications. J Endocrinol 40:343–352

    Article  CAS  PubMed  Google Scholar 

  • Zenuto RR (1999) Sexual size dimorphism, testes size and mating system in two populations of Ctenomys talarum (Rodentia: Octodontidae). J Nat Hist 33:305–314

    Article  Google Scholar 

  • Zenuto RR (2010) Dear enemy relationships in the subterranean rodent Ctenomys talarum: the role of memory of familiar odours. Anim Behav 79:1247–1255

    Article  Google Scholar 

  • Zenuto RR, Busch C (1998) Population biology of the subterranean rodent Ctenomys australis (Tuco-tuco) in a coastal dunefield in Argentina. Mamm Biol 63:357–367

    Google Scholar 

  • Zenuto R, Fanjul MS (2002) Olfactory recognition of individual scents in the subterranean rodent Ctenomys talarum (Rodentia: Octodontidae). Ethology 108:629–641

    Article  Google Scholar 

  • Zenuto RR, Lacey EA, Busch C (1999) DNA fingerprinting reveals polygyny in the subterranean rodent Ctenomys talarum. Mol Ecol 8:1529–1532

    Article  CAS  PubMed  Google Scholar 

  • Zenuto RR, Vassallo AI, Busch C (2001) A method for studying social and reproductive behaviour of subterranean rodents in captivity. Acta Theriol 46:161–170

    Article  Google Scholar 

  • Zenuto RR, Antinuchi CD, Busch C (2002a) Bioenergetics of reproduction and pup development in a subterranean rodent (Ctenomys talarum). Physiol Biochem Zool 75:469–478

    Article  PubMed  Google Scholar 

  • Zenuto RR, Vassallo AI, Busch C (2002b) Comportamiento social y reproductivo del roedor subterráneo solitario Ctenomys talarum (Rodentia: Ctenomyidae) en condiciones de semicautiverio. Rev Chil Hist Nat 75:165–177

    Article  Google Scholar 

  • Zenuto R, Fanjul MS, Busch C (2004) Use of chemical communication by subterranean rodent Ctenomys talarum during the reproductive season. J Chem Ecol 30:2111–2126

    Article  CAS  PubMed  Google Scholar 

  • Zenuto RR, Estavillo C, Fanjul MS (2007) Familiarity and mating behavior in the subterranean rodent Ctenomys talarum (tuco-tuco). Can J Zool 85:944–955

    Article  Google Scholar 

Download references

Acknowledgments

We wish to dedicate this chapter to Cristina Busch who initiated the study of ecology, physiology, and behavior of tuco-tucos in the Universidad Nacional de Mar del Plata. We are grateful to the editors for inviting us to contribute with this chapter. Our research was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica, Consejo Nacional de Investigacion Científica y Tecnológica and Universidad Nacional de Mar del Plata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana R. Zenuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fanjul, M.S. et al. (2021). Ecological Physiology and Behavior in the Genus Ctenomys. In: Freitas, T.R.O.d., Gonçalves, G.L., Maestri, R. (eds) Tuco-Tucos. Springer, Cham. https://doi.org/10.1007/978-3-030-61679-3_11

Download citation

Publish with us

Policies and ethics