Skip to main content

Authorship Analysis Approaches

  • 285 Accesses

Part of the International Series on Computer Entertainment and Media Technology book series (ISCEMT)

Abstract

This chapter presents an overview of authorship analysis from multiple standpoints. It includes historical perspective, description of stylometric features, and authorship analysis techniques and their limitations.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61675-5_4
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-61675-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

References

  1. J. Rudman, The state of authorship attribution studies: some problems and solutions. Comput. Hum. 31(4), 351–365 (1997)

    Google Scholar 

  2. H. Baayen, H. Van Halteren, F. Tweedie, Outside the cave of shadows: using syntactic annotation to enhance authorship attribution. Liter. Linguist. Comput. 11(3), 121–132 (1996)

    Google Scholar 

  3. J.F. Burrows, Word-patterns and story-shapes: the statistical analysis of narrative style. Liter. Linguist. Comput. 2(2), 61–70 (1987)

    Google Scholar 

  4. O. De Vel, A. Anderson, M. Corney, G. Mohay, Mining e-mail content for author identification forensics. ACM SIGMOD Rec. 30(4), 55–64 (2001)

    CrossRef  Google Scholar 

  5. R. Zheng, Y. Qin, Z. Huang, H. Chen, Authorship analysis in cybercrime investigation, in International Conference on Intelligence and Security Informatics (2003), pp. 59–73

    Google Scholar 

  6. A. Abbasi, H. Chen, Writeprints: a stylometric approach to identity-level identification and similarity detection in cyberspace. ACM Trans. Inf. Syst. 26(2), 7 (2008)

    CrossRef  Google Scholar 

  7. S. Argamon, M. Koppel, G. Avneri, Routing documents according to style, in First International Workshop on Innovative Information Systems (1998), pp. 85–92

    Google Scholar 

  8. D.I. Holmes, The evolution of stylometry in humanities scholarship. Liter. Linguist. Comput. 13(3), 111–117 (1998)

    Google Scholar 

  9. G.U. Yule, On sentence-length as a statistical characteristic of style in prose: with application to two cases of disputed authorship. Biometrika 30(3/4), 363–390 (1939)

    Google Scholar 

  10. W.W. Greg, The statistical study of literary vocabulary. JSTOR 291–293 (1944)

    Google Scholar 

  11. R. Zheng, J. Li, H. Chen, Z. Huang, A framework for authorship identification of online messages: writing-style features and classification techniques. J. Am. Soc. Inf. Sci. Technol. 57(3), 378–393 (2006)

    CrossRef  Google Scholar 

  12. F. Mosteller, D. Wallace, Inference and disputed authorship: the federalist (1964)

    Google Scholar 

  13. E. Stamatatos, N. Fakotakis, G. Kokkinakis, Automatic text categorization in terms of genre and author. Comput. Linguist. 26(4), 471–495 (2000)

    Google Scholar 

  14. M. Corney, O. De Vel, A. Anderson, G. Mohay, Gender-preferential text mining of e-mail discourse, in 18th Annual Proceedings Computer Security Applications Conference, 2002 (2002), pp. 282–289

    Google Scholar 

  15. M. Gamon, Linguistic correlates of style: authorship classification with deep linguistic analysis features, in Proceedings of the 20th International Conference on Computational Linguistics (2004), p. 611

    Google Scholar 

  16. E. Frank, S. Kramer, Ensembles of nested dichotomies for multi-class problems, in Proceedings of the Twenty-First International Conference on Machine Learning (2004), p. 39

    Google Scholar 

  17. E. Frank, M.A. Hall, I.H. Witten, The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques” (Morgan Kaufmann, 2016)

    Google Scholar 

  18. Discovering Email Header Forensic Analysis! (2017). [Online]. http://www.xploreforensics.com/blog/email-header-forensic-analysis.html. Accessed 5 May 2020

  19. J. Diederich, J. Kindermann, E. Leopold, G. Paass, Authorship attribution with support vector machines. Appl. Intell. 19(1–2), 109–123 (2003)

    MATH  Google Scholar 

  20. O. De Vel, Mining e-mail authorship, in Proc. Workshop on Text Mining, ACM International Conference on Knowledge Discovery and Data Mining (KDD’2000) (2000)

    Google Scholar 

  21. F. Mosteller, D.L. Wallace, Applied Bayesian and Classical Inference: The Case of the Federalist Papers (Springer Science & Business Media, 2012)

    Google Scholar 

  22. G. Salton, M.J. McGill, Introduction to modern information retrieval (1986)

    Google Scholar 

  23. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  24. L.M. Manevitz, M. Yousef, One-class SVMs for document classification. J. Mach. Learn. Res. 2, 139–154 (2001)

    MATH  Google Scholar 

  25. T. Joachims, Text categorization with support vector machines: learning with many relevant features, in European Conference on Machine Learning (1998), pp. 137–142

    Google Scholar 

  26. G.-F. Teng, M.-S. Lai, J.-B. Ma, Y. Li, E-mail authorship mining based on SVM for computer forensic, in Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 2 (2004), pp. 1204–1207

    Google Scholar 

  27. H. Li, D. Shen, B. Zhang, Z. Chen, Q. Yang, Adding semantics to email clustering, in Sixth International Conference on Data Mining, 2006. ICDM’06 (2006), pp. 938–942

    Google Scholar 

  28. H. Van Halteren, Author verification by linguistic profiling: an exploration of the parameter space. ACM Trans. Speech Lang. Process. 4(1), 1 (2007)

    Google Scholar 

  29. T. Kucukyilmaz, B.B. Cambazoglu, C. Aykanat, F. Can, Chat mining: predicting user and message attributes in computer-mediated communication. Inf. Process. Manag. 44(4), 1448–1466 (2008)

    CrossRef  Google Scholar 

  30. Y. Zhao, J. Zobel, Effective and scalable authorship attribution using function words, in Asia Information Retrieval Symposium (2005), pp. 174–189

    Google Scholar 

  31. O. De Vel, A.M. Anderson, M.W. Corney, G.M. Mohay, Multi-topic e-mail authorship attribution forensics (2001)

    Google Scholar 

  32. M. Koppel, J. Schler, S. Argamon, Computational methods in authorship attribution. J. Am. Soc. Inf. Sci. Technol. 60(1), 9–26 (2009)

    Google Scholar 

  33. M. Koppel, S. Argamon, A.R. Shimoni, Automatically categorizing written texts by author gender. Liter. Linguist. Comput. 17(4), 401–412 (2002)

    Google Scholar 

  34. S. Argamon, M. Šarić, S.S. Stein, Style mining of electronic messages for multiple authorship discrimination: first results, in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2003), pp. 475–480

    Google Scholar 

  35. A. Abbasi, H. Chen, J.F. Nunamaker, Stylometric identification in electronic markets: scalability and robustness. J. Manag. Inf. Syst. 25(1), 49–78 (2008)

    Google Scholar 

  36. O.Y. de Vel, M.W. Corney, A.M. Anderson, G.M. Mohay, Language and gender author cohort analysis of e-mail for computer forensics (2002)

    Google Scholar 

  37. J. Novak, P. Raghavan, A. Tomkins, Anti-aliasing on the web, in Proceedings of the 13th International Conference on World Wide Web (2004), pp. 30–39

    Google Scholar 

  38. S.E. Robertson, K.S. Jones, Relevance weighting of search terms. J. Am. Soc. Inf. Sci. 27(3), 129–146 (1976)

    Google Scholar 

  39. J.R. Quinlan et al., Learning with continuous classes, in 5th Australian Joint Conference on Artificial Intelligence, vol. 92 (1992), pp. 343–348

    Google Scholar 

  40. S.L. Salzberg, C4. 5: programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993. Mach. Learn. 16(3), 235–240 (1994)

    Google Scholar 

  41. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  42. M. Van Uden, Rocchio: relevance feedback in learning classification algorithms, in Proceedings of the ACM SIGIR Conference (1998)

    Google Scholar 

  43. F. Sebastiani, Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    Google Scholar 

  44. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases. ACM SIGMOD Rec 22(2), 207–216 (1993)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, F., Debbabi, M., Fung, B.C.M. (2020). Authorship Analysis Approaches. In: Machine Learning for Authorship Attribution and Cyber Forensics. International Series on Computer Entertainment and Media Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-61675-5_4

Download citation