Skip to main content

Effects of Cannabinoid Agonists and Antagonists on Sleep in Laboratory Animals

  • Chapter
  • First Online:
Cannabinoids and Sleep

Abstract

The cannabinoids are a family of chemical compounds that can be either synthesized or naturally derived. These compounds have been shown to modulate a wide variety of biological processes. In this chapter, the studies detailing the effects of cannabinoids on sleep in laboratory animals are reviewed. Both exogenous and endogenous cannabinoids generally appear to decrease wakefulness and alter rapid eye movement (REM) and non-REM sleep in animal models. In addition, cannabinoids potentiate the effects of sedative-hypnotic drugs. However, the individual contributions of each cannabinoid on sleep processes is more nuanced and may depend on the site of action in the central nervous system. Many studies investigating the mechanism of cannabinoid effects on sleep suggest that the effects of cannabinoids on sleep are mediated via cannabinoid receptors; however, some evidence suggests that some sleep effects may be elicited via non-cannabinoid receptor-dependent mechanisms. More research is necessary to fully elucidate the role of each compound in modulating sleep processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams PM, Barratt ES (1975) Effect of chronic marijuana administration of stages of primate sleep-wakefulness. Biol Psychiatry 10:315

    CAS  PubMed  Google Scholar 

  • Barratt ES, Adams PM (1973) Chronic marijuana usage and sleep-wakefulness cycles in cats. Biol Psychiatry 6:207–214

    CAS  PubMed  Google Scholar 

  • Basile A, Hanuš L, Mendelson W (1999) Characterization of the hypnotic properties of oleamide. NeuroReport 10:947–951

    Article  CAS  PubMed  Google Scholar 

  • Baur R, Gertsch J, Sigel E (2012) The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABA(A) receptors. Br J Pharmacol 165:2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger HJ, Krantz JC (1972) Phenitrone: ineffective blockade of (—)-trans-Δ9-tetrahydrocannabinol in mice and dogs. J Pharm Pharmacol 24:492–493

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya AK, Aulakh CS, Pradhan SN, Pradhan S, Ghosh P (1980) Behavioral and neurochemical effects of Δ 9-tetrahydrocannabinol in rats. Neuropharmacology 19:87–95

    Article  CAS  PubMed  Google Scholar 

  • Bornheim LM, Borys HK, Karler R (1981) Effect of cannabidiol on cytochrome P-450 and hexobarbital sleep time. Biochem Pharmacol 30:503–507

    Article  CAS  PubMed  Google Scholar 

  • Borys HK, Ingall GB, Karler R (1979) Development of tolerance to the prolongation of hexobarbitone sleeping time caused by cannabidiol. Br J Pharmacol 67:93–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose BC, Saifi AQ, Bhagwat AW (1963) Effect of cannabis indica on hexobarbital sleeping time and tissue respiration of rat brain. Archives internationales de pharmacodynamie et de therapie 141:520

    CAS  PubMed  Google Scholar 

  • Buonamici M, Young GA, Khazan N (1982) Effects of acute δ 9-THC administration on EEG and EEG power spectra in the rat. Neuropharmacology 21:825–829

    Article  CAS  PubMed  Google Scholar 

  • Calik MW, Carley DW (2017) Effects of cannabinoid agonists and antagonists on sleep and breathing in Sprague-Dawley rats. Sleep 40

    Google Scholar 

  • Carley DW, Pavlovic S, Janelidze M, Radulovacki M (2002) Functional role for cannabinoids in respiratory stability during sleep. Sleep 25:388–395

    Article  Google Scholar 

  • Carlini EA, Santos M, Claussen U, Bieniek D, Korte F (1970) Structure activity relationship of four tetrahydrocannabinols and the pharmacological activity of five semi-purified extracts of Cannabis sativa. Psychopharmacologia 18:82–93

    Article  CAS  PubMed  Google Scholar 

  • Carlini EA, Mechoulam R, Lander N (1975) Anticonvulsant activity of four oxygenated cannabidiol derivatives. Res Commun Chem Pathol Pharmacol 12:1–15

    CAS  PubMed  Google Scholar 

  • Chagas MHN et al (2013) Effects of acute systemic administration of cannabidiol on sleep-wake cycle in rats. J Psychopharmacol 27:312–316

    Article  CAS  PubMed  Google Scholar 

  • Cheer JF, Cadogan AK, Marsden CA, Fone KC, Kendall DA (1999) Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 38:533–541

    Article  CAS  PubMed  Google Scholar 

  • Chesher GB et al (1974) Interaction of cannabis and general anaesthetic agents in mice. Br J Pharmacol. 50(4):593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarotti M, Giusti GV, Vigevani F (1980) In vivo and in vitro properties of anti-delta 9-tetrahydrocannabinol antibody. Drug Alcohol Depend 5:231–233

    Article  CAS  PubMed  Google Scholar 

  • Childers SR (2006) Activation of G-proteins in brain by endogenous and exogenous cannabinoids. AAPS J 8:112

    Article  Google Scholar 

  • Colasanti BK, Powell SR, Craig CR (1984a) Intraocular pressure, ocular toxicity and neurotoxicity after administration of Δ 9-Tetrahydrocannabinol or cannabichromene. Exp Eye Res 38:63–71

    Article  CAS  PubMed  Google Scholar 

  • Colasanti BK, Craig CR, Allara RD (1984b) Intraocular pressure, ocular toxicity and neurotoxicity after administration of cannabinol or cannabigerol. Exp Eye Res 39:251–259

    Article  CAS  PubMed  Google Scholar 

  • Coyne L, Lees G, Nicholson RA, Zheng J, Neufield KD (2002) The sleep hormone oleamide modulates inhibitory ionotropic receptors in mammalian CNS in vitro. Br J Pharmacol 135:1977–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cravatt BF et al (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268:1506–1509

    Article  CAS  PubMed  Google Scholar 

  • Edery H, Grunfeld Y, Ben-Zvi Z, Mechoulam R (1971) Structural requirements for cannabinoid activity*. Ann N Y Acad Sci 191:40–53

    Article  CAS  Google Scholar 

  • Egertová M, Cravatt BF, Elphick MR (2000) Fatty acid amide hydrolase expression in rat choroid plexus: possible role in regulation of the sleep-inducing action of oleamide. Neurosci Lett 282:13–16

    Article  PubMed  Google Scholar 

  • Fernandes M, Schabarek A, Coper H, Hill R (1974a) Modification of delta9-THC-actions by cannabinol and cannabidiol in the rat. Psychopharmacologia 38:329–338

    Article  CAS  PubMed  Google Scholar 

  • Fernandes M, Kluwe S, Coper H (1974b) Cannabinoids and hexobarbital induced loss of righting reflexes. Naunyn Schmiedeberg’s Arch Pharmacol 283:431–435

    Article  CAS  Google Scholar 

  • Friedman E, Gershon S (1974) Effect of delta8-THC on alcohol-induced sleeping time in the rat. Psychopharmacologia 39:193–198

    Article  CAS  PubMed  Google Scholar 

  • Fujimori M, Himwich HE (1973) Delta 9-tetrahydrocannabinol and the sleep-wakefulness cycle in rabbits. Physiol Behav 11:291–295

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto JM (1972) Modification of the effects of 9-tetrahydrocannabinol by phenobarbital pretreatment in mice. Toxicol Appl Pharmacol 23:623–634

    Article  CAS  PubMed  Google Scholar 

  • Giusti GV, Chiarotti M, Vigevani F (1980) Neutralization of the effect of delta 9-tetrahydrocannabinol on barbiturate sleeping time by specific active immunization. Drug Alcohol Depend 5:185–187

    Article  CAS  PubMed  Google Scholar 

  • Goonawardena A et al (2015) Modulation of food consumption and sleep–wake cycle in mice by the neutral CB1 antagonist ABD459. Behav Pharmacol 26:289–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunfeld Y, Edery H (1969) Psychopharmacological activity of the active constituents of hashish and some related cannabinoids. Psychopharmacologia 14:200–210

    Article  CAS  PubMed  Google Scholar 

  • Hatoum NS, Davis WM, Elsohly MA, Turner CE (1981) Cannabichromene and Δ9-tetrahydrocannabinol: interactions relative to lethality, hypothermia and hexobarbital hypnosis. Gen Pharmacol 12:357–362

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Solís A, Vásquez KG, Prospéro-García O (2010) Acute and subchronic administration of anandamide or oleamide increases REM sleep in rats. Pharmacol Biochem Behav 95:106–112

    Article  PubMed  CAS  Google Scholar 

  • Hourani W, Alexander SPH (2018) Cannabinoid ligands, receptors and enzymes: pharmacological tools and therapeutic potential. Brain Neurosci Adv 2:2398212818783908

    Article  PubMed  PubMed Central  Google Scholar 

  • Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68:619–631

    Article  PubMed  Google Scholar 

  • Hsiao Y, Yi P, Li C, Chang F (2012) Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats. Neuropharmacology 62:373–384

    Article  CAS  PubMed  Google Scholar 

  • Huitrón-Reséndiz S, Gombart L, Cravatt BF, Henriksen SJ (2001) Effect of oleamide on sleep and its relationship to blood pressure, body temperature, and locomotor activity in rats. Exp Neurol 172:235–243

    Article  PubMed  CAS  Google Scholar 

  • Huitron-Resendiz S, Sanchez-Alavez M, Wills DN, Cravatt BF, Henriksen SJ (2004) Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase. Sleep 27:857–865

    Article  PubMed  Google Scholar 

  • Jacobson L et al (2011) Characterization of a novel, brain-penetrating CB1 receptor inverse agonist: metabolic profile in diet-induced obese models and aspects of central activity. Naunyn Schmiedeberg’s Arch Pharmacol 384:565–581

    Article  CAS  Google Scholar 

  • Jembrek MJ, Vlainic J (2015) GABA receptors: pharmacological potential and pitfalls. Curr Pharm Des 21:4943–4959

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Nagaoka J (1981) Further studies on the determinant role of brain level of pentobarbital for the development of acute hypnotic tolerance. J Pharmacobio-dyn 4:700–705

    Article  CAS  PubMed  Google Scholar 

  • Karler R, Sangdee P, Turkanis SA, Borys HK (1979) The pharmacokinetic fate of cannabidiol and its relationship to barbiturate sleep time. Biochem Pharmacol 28:777–784

    Article  CAS  PubMed  Google Scholar 

  • Karniol IG, Carlini EA (1973) Pharmacological interaction between cannabidiol and delta 9-tetrahydrocannabinol. Psychopharmacologia 33:53–70

    Article  CAS  PubMed  Google Scholar 

  • Katsunori N et al (1993) In vitro metabolic formation of a new metabolite, 6[beta]-Hydroxymethyl-[delta]9-tetrahydrocannabinol from cannabidiol through an epoxide intermediate and its pharmacological effects on mice. Biol Pharm Bull 16:1008

    Article  Google Scholar 

  • Krantz JC, Berger HJ, Welch BL (1971) Blockade of (-)-trans-9-tetrahydrocannabinol depressant effect by cannabinol in mice. Am J Pharm Sci Support Public Health 143:149–152

    CAS  PubMed  Google Scholar 

  • Kubena RK, Barry H (1970) Interactions of delta1-tetrahydrocannabinol with barbiturates and methamphetamine. J Pharmacol Exp Ther 173:94–100

    CAS  PubMed  Google Scholar 

  • Laposky AD, Homanics GE, Basile A, Mendelson WB (2001) Deletion of the GABA(A) receptor beta 3 subunit eliminates the hypnotic actions of oleamide in mice. NeuroReport 12:4143–4147

    Article  CAS  PubMed  Google Scholar 

  • Laprairie RB, Bagher AM, Denovan-Wright EM (2017) Cannabinoid receptor ligand bias: implications in the central nervous system. Curr Opin Pharmacol 32:32–43

    Article  CAS  PubMed  Google Scholar 

  • Lazaratou H et al (1980) The pharmacological effect of fractions obtained by smoking cannabis through a water-pipe. II. A second fractionation step. Experientia 36:1407–1408

    Article  CAS  PubMed  Google Scholar 

  • Lees G, Dougalis A (2004) Differential effects of the sleep-inducing lipid oleamide and cannabinoids on the induction of long-term potentiation in the CA1 neurons of the rat hippocampus in vitro. Brain Res 997:1–14

    Article  CAS  PubMed  Google Scholar 

  • Leite R, Carlini EA, Lander N, Mechoulam R (1982) Anticonvulsant effects of the (–) and (+)isomers of cannabidiol and their dimethylheptyl homologs. Pharmacology 24:141–146

    Article  CAS  PubMed  Google Scholar 

  • Lerner RA et al (1994) Cerebrodiene: a brain lipid isolated from sleep-deprived cats. Proc Natl Acad Sci U S A 91:9505–9508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipparini F, de Carolis AS, Longo VG (1969) A neuropharmacological investigation of some trans-tetrahydrocannabinol derivatives. Physiol Behav 4:527–532

    Article  CAS  Google Scholar 

  • López-Ortíz M et al (2010) Chemoenzymatic synthesis and cannabinoid activity of a new diazabicyclic amide of phenylacetylricinoleic acid. Bioorg Med Chem Lett 20:3231–3234

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Anderson HD (2017) Cannabinoid signaling in health and disease. Can J Physiol Pharmacol 95:311–327

    Article  CAS  PubMed  Google Scholar 

  • Martin BR et al (1975) Marihuana-like activity of new synthetic tetrahydrocannabinols. Pharmacol Biochem Behav 3:849–853

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Schneider J, Lucas CJ, Galettis P (2018) Exogenous cannabinoid efficacy: merely a pharmacokinetic interaction? Clin Pharmacokinet 57:539–545

    Article  CAS  PubMed  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Gaoni Y (1967) Recent advances in the chemistry of Hashish. Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrès dans la Chimie des Substances Organiques Naturelles 25:175–213

    Google Scholar 

  • Mechoulam R, Hanuš LO, Pertwee R, Howlett AC (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757–764

    Article  CAS  PubMed  Google Scholar 

  • Mendelson W, Basile A (1999) The hypnotic actions of oleamide are blocked by a cannabinoid receptor antagonist. NeuroReport 10:3237–3239

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Díaz M et al (2013) Entopeduncular nucleus endocannabinoid system modulates sleep–waking cycle and mood in rats. Pharmacol Biochem Behav 107:29–35

    Article  PubMed  CAS  Google Scholar 

  • Mijangos-Moreno S, Poot-Aké A, Arankowsky-Sandoval G, Murillo-Rodríguez E (2014) Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats. Neurosci Res 84:60–63

    Article  CAS  PubMed  Google Scholar 

  • Monti JM (1977) Hypnoticlike effects of cannabidiol in the rat. Psychopharmacology 55:263–265

    Article  CAS  PubMed  Google Scholar 

  • Moreton JE, Davis WM (1973) Electroencephalographic study of the effects of tetrahydrocannabinols on sleep in the rat. Neuropharmacology 12:897–907

    Article  CAS  PubMed  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  CAS  PubMed  Google Scholar 

  • Murillo-Rodrı́guez E et al (1998) Anandamide modulates sleep and memory in rats. Brain Res 812:270–274

    Article  PubMed  Google Scholar 

  • Murillo-Rodríguez E, Cabeza R, Méndez-Díaz M, Navarro L, Prospéro-García O (2001) Anandamide-induced sleep is blocked by SR141716A, a CB1 receptor antagonist and by U73122, a phospholipase C inhibitor. NeuroReport 12:2131–2136

    Article  PubMed  Google Scholar 

  • Murillo-Rodriguez E, Blanco-Centurion C, Sanchez C, Piomelli D, Shiromani PJ (2003) Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study. Sleep 26:943–947

    Article  PubMed  Google Scholar 

  • Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R (2006) Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. FEBS Lett 580:4337–4345

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E, Vázquez E, Millán-Aldaco D, Palomero-Rivero M, Drucker-Colin R (2007) Effects of the fatty acid amide hydrolase inhibitor URB597 on the sleep-wake cycle, c-Fos expression and dopamine levels of the rat. Eur J Pharmacol 562:82–91

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R (2008a) The nonpsychoactive cannabis constituent cannabidiol is a wake-inducing agent. Behav Neurosci 122:1378–1382

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E, Millán-Aldaco D, Di Marzo V, Drucker-Colín R (2008b) The anandamide membrane transporter inhibitor, VDM-11, modulates sleep and c-Fos expression in the rat brain. Neuroscience 157:1–11

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Mechoulam R, Drucker-Colín R (2011) Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life Sci 88:504–511

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Di Marzo V (2012) The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. Physiol Behav 109:88–95

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E et al (2016) Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience 339:433–449

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Rodríguez E et al (2017) Role of N-arachidonoyl-serotonin (AA-5-HT) in sleep-wake cycle architecture, sleep homeostasis, and neurotransmitters regulation. Front Mol Neurosci 10:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narimatsu S, Yamamoto I, Watanabe K, Yoshimura H (1983) 9 alpha, 10 alpha-epoxyhexahydrocannabinol formation from delta 9-tetrahydrocannabinol by liver microsomes of phenobarbital-treated mice and its pharmacological activities in mice. J Pharmacobio-dyn 6:558–564

    Article  CAS  PubMed  Google Scholar 

  • Narimatsu S et al (1984) Metabolic disposition of 8 alpha, 9 alpha- and 8 beta, 9 beta-epoxyhexahydrocannabinols in the mouse. J Pharmacobio-dyn 7:671–676

    Article  CAS  PubMed  Google Scholar 

  • Narimatsu S et al (1985) Pharmacological activities in the mouse of delta 9-tetrahydrocannabinol metabolites oxidized at the 8-position. Chem Pharm Bull 33:392–395

    Article  CAS  Google Scholar 

  • Navarro L et al (2003) Potential role of the cannabinoid receptor cb1 in rapid eye movement sleep rebound. Neuroscience 120:855–859

    Article  CAS  PubMed  Google Scholar 

  • Oishi R, Itoh Y, Nishibori M, Saeki K, Ueki S (1988) Enhancement by alpha-fluoromethyl histidine of the thiopental sleep-prolonging action of delta9-tetrahydrocannabinol. Psychopharmacology 95

    Google Scholar 

  • Paton WDM, Pertwee RG (1972) Effect of cannabis and certain of its constituents on pentobarbitone sleeping time and phenazone metabolism. Br J Pharmacol. 44(2):250–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pava MJ, den Hartog CR, Blanco-Centurion C, Shiromani PJ, Woodward JJ (2014) Endocannabinoid modulation of cortical up-states and NREM sleep. PLoS One 9:e88672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pava MJ, Makriyannis A, Lovinger DM (2016) Endocannabinoid signaling regulates sleep stability. PLoS One 11:e0152473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Morales M et al (2013) 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. Pharmacol Biochem Behav 108:1–7

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Morales M, López-Colomé AM, Méndez-Díaz M, Ruiz-Contreras AE, Prospéro-García O (2014a) Inhibition of diacylglycerol lipase (DAGL) in the lateral hypothalamus of rats prevents the increase in REMS and food ingestion induced by PAR1 stimulation. Neurosci Lett 578:117–121

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Morales M, Fajardo-Valdez A, Méndez-Díaz M, Ruiz-Contreras AE, Prospéro-García O (2014b) 2-Arachidonoylglycerol into the lateral hypothalamus improves reduced sleep in adult rats subjected to maternal separation. NeuroReport 25:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51

    Article  CAS  Google Scholar 

  • Rating D, Broermann I, Honecker H, Kluwe S, Coper H (1972) Effect of subchronic treatment with (-) delta8-trans-tetrahydrocannabinol (delta8-THC) on food intake, body temperature, hexobarbital sleeping time and hexobarbital elimination in rats. Psychopharmacologia 27:349–357

    Article  CAS  PubMed  Google Scholar 

  • Reyes Prieto NM et al (2012) Oleamide restores sleep in adult rats that were subjected to maternal separation. Pharmacol Biochem Behav 103:308–312

    Article  CAS  PubMed  Google Scholar 

  • Rueda-Orozco PE, Soria-Gómez E, Montes-Rodríguez CJ, Pérez-Morales M, Prospéro-García O (2010) Intrahippocampal administration of anandamide increases REM sleep. Neurosci Lett 473:158–162

    Article  CAS  PubMed  Google Scholar 

  • Santucci V, Storme JJ, Soubrié P, Le Fur G (1996) Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci 58:110

    Article  Google Scholar 

  • Sassenrath EN, Chapman LF (1975) Primate research. Springer, Boston, MA, pp 55–63

    Book  Google Scholar 

  • Scheckel CL, Boff E, Dahlen P, Smart T (1968) Behavioral effects in monkeys of racemates of two biologically active marijuana constituents. Science 160:1467–1469

    Article  CAS  PubMed  Google Scholar 

  • Schuster J, Ates M, Brune K, Gühring H (2002) The cannabinoids R(−)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU-210), 2-O-arachidonoylglycerylether (HU-310) and arachidonyl-2-chloroethylamide (ACEA) increase isoflurane provoked sleep duration by activation of cannabinoids 1 (CB 1)-receptors in mice. Neurosci Lett 326:196–200

    Article  CAS  PubMed  Google Scholar 

  • Segelman FP, Segelman AB, Duane Sofia R, Harakal JJ, Knobloch LC (1974) Cannabis sativa L. (Marijuana) V: pharmacological evaluation of marijuana aqueous extract and volatile oil. J Pharm Sci 63:962–964

    Article  CAS  PubMed  Google Scholar 

  • Siemens AJ, Kalant H (1974) Metabolism of delta1-tetrahydrocannabinol by rats tolerant to cannabis. Can J Physiol Pharmacol 52:1154–1166

    Article  CAS  PubMed  Google Scholar 

  • Siemens AJ, Kalant H, Khanna JM, Marshman J, Ho G (1974) Effect of cannabis on pentobarbital-induced sleeping time and pentobarbital metabolism in the rat. Biochem Pharmacol 23:477–488

    Article  CAS  PubMed  Google Scholar 

  • Silvani A et al (2014) Multiple sleep alterations in mice lacking cannabinoid type 1 receptors. PLoS One 9:e89432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sofia RD (1977) Interactions of chronic and acute 6 1-tetrahydrocannabinol pretreatment with zoxazolamine and barbiturates. Res Commun Chem Pathol Pharmacol 5:91–98

    Google Scholar 

  • Sofia RD, Barry H (1983) The effects of SKF 525-A on the analgesic and barbiturate-potentiating activity of delta 9-tetrahydrocannabinol in mice and rats. Pharmacology 27:223–236

    Article  CAS  PubMed  Google Scholar 

  • Sofia RD, Knobloch LC (1973) The interaction of delta9-tetrahydrocannabinol pretreatment with various sedative-hypnotic drugs. Psychopharmacologia 30:185–194

    Article  CAS  PubMed  Google Scholar 

  • Sofia RD, Knobloch LC (1974) The effect of delta9-tetrahydrocannabinol pretreatment on ketamine thiopental or CT-1341-induced loss of righting reflex in mice. Arch Int Pharmacodyn Ther 207:270–281

    CAS  PubMed  Google Scholar 

  • Soni N, Prabhala BK, Mehta V, Mirza O, Kohlmeier KA (2017) Anandamide and 2-AG are endogenously present within the laterodorsal tegmental nucleus: Functional implications for a role of eCBs in arousal. Brain Res 1665:74–79

    Article  CAS  PubMed  Google Scholar 

  • Stevenson IH, Turnbull MJ (1974) A study of the factors affecting the sleeping time following intracerebroventricular administration of pentobarbitone sodium. Br J Pharmacol 50:499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone C, McCoy D, Forney R (1976) Combined effect of methaqualone and two cannabinoids. J Forensic Sci 21:108–111

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MF, Willard DH (1978) The beagle dog as an animal model for marihuana smoking studies. Toxicol Appl Pharmacol 45:445–462

    Article  CAS  PubMed  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365

    Article  CAS  Google Scholar 

  • Takahashi RN, Karniol IG (1975) Pharmacological interaction between cannabinol and delta9-tetrahydrocannabinol. Psychopharmacologia 41(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Usami N et al (1998) Synthesis and pharmacological activities in mice of halogenated delta 9-tetrahydrocannabinol derivatives. Chem Pharm Bull 46:1462–1467

    Article  CAS  Google Scholar 

  • Usami N et al (1999) Synthesis and pharmacological evaluation in mice of halogenated cannabidiol derivatives. Chem Pharm Bull 47:1641–1645

    Article  CAS  Google Scholar 

  • Wallach MB, Gershon S (1973) The effects of Δ8-THC on the EEG, reticular multiple unit activity and sleep of cats. Eur J Pharmacol 24:172–178

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Yamamoto I, Oguri K, Yoshimura H (1980) Comparison in mice of pharmacological effects of Δ8-tetrahydrocannabinol and its metabolites oxidized at 11-position. Eur J Pharmacol 63:1–6

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Narimatsu S, Yamamoto I, Yoshimura H (1982) Difference in tolerance development of hypothermia and pentobarbital-induced sleep prolongating effect of 11-hydroxy-delta 8-tetrahydrocannabinol and 11-oxo-delta 8-tetrahydrocannabinol in mice. Eur J Pharmacol 77:53–56

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Narimatsu S, Yamamoto I, Yoshimura H (1987) Cross-tolerance development to the prolongation of pentobarbitone-induced sleep by Δ8-tetrahydrocannabinol and 11-hydroxy-Δ8-tetrahydrocannabinol in mice. J Pharm Pharmacol 39:945–947

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K et al (1990) Comparison of pharmacological effects of tetrahydrocannabinols and their 11-hydroxy-metabolites in mice. Chem Pharm Bull 38:2317–2319

    Article  CAS  Google Scholar 

  • Watanabe K et al (1999) Pharmacological effects in mice of anandamide and its related fatty acid ethanolamides, and enhancement of cataleptogenic effect of anandamide by phenylmethylsulfonyl fluoride. Biol Pharm Bull 22:366–370

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto I, Gohda H, Narimatsu S, Yoshimura H (1988) Identification of cannabielsoin, a new metabolite of cannabidiol formed by guinea-pig hepatic microsomal enzymes, and its pharmacological activity in mice. J Pharmacobio-dyn 11:833–838

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto I, Gohda H, Narimatsu S, Watanabe K, Yoshimura H (1991) Cannabielsoin as a new metabolite of cannabidiol in mammals. Pharmacol Biochem Behav 40:541–546

    Article  CAS  PubMed  Google Scholar 

  • Yang JY, Wu CF, Song HR (1999) Studies on the sedative and hypnotic effects of oleamide in mice. Arzneimittelforschung 49:663–667

    CAS  PubMed  Google Scholar 

  • Yang J et al (2003) The serotonergic system may be involved in the sleep-inducing action of oleamide in rats. Naunyn Schmiedeberg’s Arch Pharmacol 368:457–462

    Article  CAS  Google Scholar 

  • Yoshida H et al (1995) Synthesis and pharmacological effects in mice of halogenated cannabinol derivatives. Chem Pharm Bull 43:335–337

    Article  CAS  Google Scholar 

  • Yoshimura H, Watanabe K, Oguri K, Fujiwara M, Ueki S (1978) Synthesis and pharmacological activity of a phosphate ester of delta8-tetrahydrocannabinol. J Med Chem 21:1079–1081

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Calik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrunich-Rutherford, M.L., Calik, M.W. (2021). Effects of Cannabinoid Agonists and Antagonists on Sleep in Laboratory Animals. In: Monti, J.M., Pandi-Perumal, S.R., Murillo-Rodríguez, E. (eds) Cannabinoids and Sleep. Advances in Experimental Medicine and Biology, vol 1297. Springer, Cham. https://doi.org/10.1007/978-3-030-61663-2_7

Download citation

Publish with us

Policies and ethics