Skip to main content

Statistical Analysis of the Width of Kerf Affecting the Manufacture of Minimal Inner Radius

  • 231 Accesses

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 403)

Abstract

Unconventional technology of wire electrical discharge machining (WEDM) is essential in manufacturing precise parts for the aviation, automotive military or medical industry. Precision of dimensions and shapes of machined parts is preserved because of the ability to machine the material after the final heat treatment. However efficient and precise machining also depends on the ability to manufacture as small radiuses as possible, which can be achieved by minimizing the width of kerf. To minimize the width of kerf “Half central composite response surface design” plan of experiment considering gap voltage, pulse on time, pulse off time, wire feed and discharge current was implemented. Measurement system analysis (MSA) was computed for the width of kerf measuring system and based on its results mathematical model of the average width of kerf was found. Optimal setting of statistically significant machine parameters to minimize the average with of kerf was deducted from this model.

Keywords

  • WEDM
  • Electrical discharge machining
  • Design of experiment
  • Measurement system analysis
  • Aluminum alloy
  • Width of kerf

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61659-5_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-61659-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Jameson, E.C.: Electrical Discharge Machining. Society of Manufacturing Engineers, Southfield (2001)

    Google Scholar 

  2. Ho, K.H., Newman, S.T., Rahimifard, S., Allen, R.D.: State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf. 44, 1247–1259 (2004)

    CrossRef  Google Scholar 

  3. Ho, K.H., Newman, S.T., Rahimifard, S., Allen, R.D.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43, 1287–1300 (2003)

    CrossRef  Google Scholar 

  4. Boothroyd, G., Knight, W.A.: Fundamentals of Machining and Machine Tools. Taylor and Francis, Boca Raton (2005)

    Google Scholar 

  5. Dodun, O., Gonçalves-Coelho, A.M., Slătineanu, L., Nagîţ, G.: Using wire electrical discharge machining for improved corner cutting accuracy of thin parts. Int. J. Adv. Manuf. Technol.. 41, 858–864 (2009)

    CrossRef  Google Scholar 

  6. Mouralova, K., Matousek, R., Kovar, J., Mach, J., Klakurkova, L., Bednar, J.: Analyzing the surface layer after WEDM depending on the parameters of a machine for the 16MnCr5 steel. Measurement 94, 771–779 (2016)

    CrossRef  Google Scholar 

  7. Mouralova, K., Kovar, J., Klakurkova, L., Bednar, J., Benes, L., Zahradnicek, R.: Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement 114, 169–176 (2018)

    CrossRef  Google Scholar 

  8. Mouralova, K., Kovar, J., Klakurkova, L., Prokes, T., Horynova, M.: Comparison of morphology and topography of surfaces of WEDM machined structural materials. Measurement 104, 12–20 (2017)

    CrossRef  Google Scholar 

  9. Mouralova, K., Kovar, J., Klakurkova, L., Blazik, P., Kalivoda, M., Kousal, P.: Analysis of surface and subsurface layers after WEDM for Ti–6Al–4V with heat treatment. Measurement 116, 556–564 (2018)

    CrossRef  Google Scholar 

  10. Mouralova, K., Kovar, J., Klakurkova, L., Prokes, T.: Effect of Width of kerf on machining accuracy and subsurface layer after WEDM. J. Mater. Eng. Perform. 27, 1908–1916 (2018)

    CrossRef  Google Scholar 

  11. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken, NJ (2017)

    Google Scholar 

  12. Mathews, P.G.: Design of Experiments with MINITAB (2010). ISBN 9788122431117

    Google Scholar 

  13. Goos P., Jones, B.: Optimal Design of Experiments a Case Study Approach (2011)

    Google Scholar 

  14. Juran, J.M., Gryna, F.M.: Juran’s Quality Control Handbook. McGraw-Hill, New York (1988)

    Google Scholar 

  15. Mouralova, K.: Moderní technologie drátového elektroerozivního řezání kovových slitin. CERM thesis. Brno (2015). ISBN 80-214-2131-2

    Google Scholar 

  16. Mouralova, K., Kovar, L., Bednar, J., Matousek, R., Klakurkova, L.: Statistical evaluation width of kerf after WEDM by analysis of variance. Mendel J. Series. 2016, 301–304 (2016)

    Google Scholar 

  17. Somashekhar, K.P., Ramachandran, N., Mathew, J.: Material removal characteristics of microslot (kerf) geometry in μ-WEDM on aluminum. Int. J. Adv. Manuf. Technol.. 51, 611–626 (2010)

    CrossRef  Google Scholar 

  18. Patil, N.G., Brahmankar, P.K.: Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix composites. Int. J. Adv. Manuf. Technol.. 48, 537–555 (2010)

    CrossRef  Google Scholar 

  19. Mahapatra, S.S., Patnaik, A.: Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int. J. Adv. Manuf. Technol. 34, 911–925 (2007)

    CrossRef  Google Scholar 

  20. Tosun, N., Cogun, C., Tosun, G.: A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. J. Mater. Process. Technol. 152, 316–322 (2004)

    CrossRef  Google Scholar 

  21. Kerfs width analysis for wire cut electro discharge machining of SS 304 L using design of experiments. Ind. J. Sci. Technol. 3, 369–373 (2010)

    Google Scholar 

  22. Gupta, P., Gupta, R.D., Khanna, R., Sharma, N.: Effect of process parameters on kerf width in WEDM for HSLA using response surface methodology. J. Eng. Technol.. 2, 1–6 (2012)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work is an output of research and scientific activities of NETME Centre, supported through project NETME CENTRE PLUS (LO1202) by financial means from the Ministry of Education, Youth and Sports under the “National Sustainability Programme I”.

This research has been financially supported from projects no. FEKT-S-17-3934 and FEKT/STI-J-18-5354.

This paper was supported by BUT, Faculty of Mechanical Engineering, Brno, Specific research 2016, with the grant “Research of modern production technologies for specific applications”, FSI-S-16-3717 and technical support of Intemac Solutions, Ltd., Kurim.

Part of the work was carried out with the support of CEITEC Nano Research Infrastructure (MEYS CR, 2016–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hrabec, P., Bednář, J., Zahradníček, R., Prokeš, T., Machova, A. (2021). Statistical Analysis of the Width of Kerf Affecting the Manufacture of Minimal Inner Radius. In: Matoušek, R., Kůdela, J. (eds) Recent Advances in Soft Computing and Cybernetics. Studies in Fuzziness and Soft Computing, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-030-61659-5_8

Download citation