Skip to main content

Identity by Descent in the Mapping of Genetic Traits

  • 500 Accesses

Abstract

This chapter shows how the descent of genome from an ancestor to currently observed descendants results in identity by descent (IBD) in current individuals and hence similarities in their DNA at genetic marker loci. Conversely, data on the marker genotypes of individuals provides inferences of shared descent of genome in current individuals, not just genome-wide but in specific genome regions. Regions where shared genome accords with phenotypic similarities for a trait provide evidence of causal DNA at some location in the region. The chapter considers both data observed on defined pedigree structures, and data on population members whose pedigree relationships may be remote and are unknown. We take a model-based approach, deriving probabilities of IBD and likelihoods of mapping parameters, given observed genetic data. We first consider probabilities of gene IBD among individuals and across a chromosome, using either a known pedigree or a population-based model. We then consider probabilities of genotypic and phenotypic data on individuals, conditional on latent IBD. Thence IBD may be inferred from marker genotypes, combining information from multiple SNP markers. Finally, we show how location-specific realizations of IBD can be used to address questions of gene mapping. By focusing on IBD, we unify pedigree and population-based approaches.

Keywords

  • Descent of genome
  • Pedigree relationships
  • Population-based inferences
  • Phenotypic similarity
  • Gene mapping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61646-5_6
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-61646-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    CAS  PubMed  CrossRef  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Balding DJ, Moltke I, Marioni J (eds) (2019) Handbook of statistical genomics, 4th edn. Wiley, Oxford, UK

    Google Scholar 

  • Blangero J, Williams JT, Almasy L (2000) Robust LOD scores for variance component-based linkage analysis. Genet Epidemiol 19(Suppl. 1):S8–S14

    PubMed  CrossRef  Google Scholar 

  • Brown MD, Glazner CG, Zheng C, Thompson EA (2012) Inferring coancestry in population samples in the presence of linkage disequilibrium. Genetics 190:1447–1460

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Browning SR, Browning BL (2010) High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526–539

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Browning SR, Thompson EA (2012) Detecting rare variant associations by identity by descent mapping in case-control studies. Genetics 190:1521–1531

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chapman NH, Nato AQ Jr, Bernier R, Ankeman K, Sohi H, Munson J, Patowary A, Archer M, Blue EM, Webb SJ, Coon H, Raskind WH, Brkanac Z, Wijsman EM (2015) Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes. Hum Genet 134:1055–1068

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cox DR (1962) Renewal theory. Methuen and Co., London, UK

    Google Scholar 

  • Day-Williams, AG, Blangero J, Dyer TD, Lange K, Sobel EM (2011) Linkage analysis without defined pedigrees. Genet Epidemiol 35:360–370

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Donnelly KP (1983) The probability that related individuals share some section of genome identical by descent. Theor Popul Biol 23:34–63

    CAS  PubMed  CrossRef  Google Scholar 

  • Elston RC, Stewart J (1971) A general model for the analysis of pedigree data. Hum Hered 21:523–542

    CAS  PubMed  CrossRef  Google Scholar 

  • Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112

    CAS  PubMed  CrossRef  Google Scholar 

  • Glazner CG, Thompson EA (2015) Pedigree-free descent-based gene mapping from population samples. Hum Hered 80:21–35

    PubMed  CrossRef  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8:229–309

    CrossRef  Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genome Res 91:47–60

    CAS  Google Scholar 

  • Hill WG, Weir BS (2011) Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res Camb 93:47–64

    CAS  PubMed  CrossRef  Google Scholar 

  • Karigl G (1981) A recursive algorithm for the calculation of gene identity coefficients. Ann Hum Genet 45:299–305

    CAS  PubMed  CrossRef  Google Scholar 

  • Koepke HA, Thompson EA (2013) Efficient testing operations on dynamic graph structures using strong hash functions. J Comput Biol 20:551–570

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lander ES, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236:1567–1570

    CAS  PubMed  CrossRef  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci (USA) 84(8):2363–2367

    CAS  CrossRef  Google Scholar 

  • Lange K, Sobel E (1991) A random walk method for computing genetic location scores. Am J Hum Genet 49:1320–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauritzen SJ (1992) Propagation of probabilities, means and variances in mixed graphical association models. J Am Stat Assoc 87:1098–1108

    CrossRef  Google Scholar 

  • Leutenegger A, Prum B, Genin E, Verny C, Clerget-Darpoux F, Thompson EA (2003) Estimation of the inbreeding coefficient through use of genomic data. Am J Hum Genet 73:516–523

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McPeek MS (1999) Optimal allele-sharing statistics for genetic mapping using affected relatives. Genet Epidemiol 16:225–249

    CAS  PubMed  CrossRef  Google Scholar 

  • Mendel G (1866) Experiments in plant hybridisation. In: Bennett JH (ed) English translation and commentary by R. A. Fisher. Oliver and Boyd, Edinburgh, 1965

    Google Scholar 

  • Moltke I, Albrechtsen A, Hansen T, Nielsen FC, Nielsen R (2011) A method for detecting IBD regions simultaneously in multiple individuals – with applications to disease genetics. Genome Res 21:1168–1180

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peter B, Wijsman EM, Nato AQ Jr, Matsushita M, Chapman KL, Stanaway IB, Wolff J, Oda K, Gabo VB, Raskind WH (2016) Genetic candidate variants in two multigenerational families with childhood apraxia of speech. PLOS One 11(4):e0153864

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    CAS  PubMed  CrossRef  Google Scholar 

  • Saad M, Nato AQ, Grimson FL, Leweis SM, Brown L, Blue EM, Thornton TA, Thompson EA, Wijsman EM (2016) Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data. BMC Proc 10(Suppl 7):295–301

    PubMed  PubMed Central  Google Scholar 

  • Smith CAB (1953) Detection of linkage in human genetics. J Roy Stat Soc B 15:153–192

    Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91:1011–1021

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Su M, Thompson EA (2012) Computationally efficient multipoint linkage analysis on extended pedigrees for trait models with two contributing major loci. Genet Epidemiol 38:602–611

    CrossRef  Google Scholar 

  • Suarez BK, Rice J, Reich T (1978) The generalized sib pair IBD distribution: its use in the detection of linkage. Ann Hum Genet 42:87–94

    CAS  PubMed  CrossRef  Google Scholar 

  • Tavaré S, Ewens WJ (1997) The multivariate Ewens distribution. In: Discrete multivariate distributions. Wiley, New York, pp 232–246

    Google Scholar 

  • Thompson EA (2000) Statistical inferences from genetic data on pedigrees. In: Volume 6 of NSF-CBMS regional conference series in probability and statistics. Institute of Mathematical Statistics, Beachwood

    Google Scholar 

  • Thompson EA (2019) Descent-based gene mapping in pedigrees and populations, chapter 20. In: Balding DJ, Moltke I, Marioni J (eds) Handbook of statistical genomics, 4th edn. Wiley, Oxford, UK, pp 573–596

    CrossRef  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang B, Sverdlov S, Thompson EA (2017) Efficient estimation of realized kinship. Genetics 205:1063–1078

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Weeks DE, Lange K (1988) The affected pedigree member method of linkage analysis. Am J Hum Genet 42:315–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Kuhner MK, Thompson EA (2014) Joint inference of identity by descent along multiple chromosomes from population samples. J Comput Biol 21:185–200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, E.A. (2021). Identity by Descent in the Mapping of Genetic Traits. In: Lohmueller, K.E., Nielsen, R. (eds) Human Population Genomics. Springer, Cham. https://doi.org/10.1007/978-3-030-61646-5_6

Download citation