Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Aragaki CC, Greenland S, Probst-Hensch N, Haile RW (1997) Hierarchical modeling of gene-environment interactions: estimating NAT2 genotype-specific dietary effects on adenomatous polyps. Cancer Epidemiol Biomark Prev 6:307–314
CAS
Google Scholar
Asimit J, Zeggini E (2010) Rare variant association analysis methods for complex traits. Annu Rev Genet 44:293–308
CAS
PubMed
CrossRef
Google Scholar
Asimit JL, Day-Williams AG, Morris AP, Zeggini E (2012) ARIEL and AMELIA: testing for an accumulation of rare variants using next-generation sequencing data. Hum Hered 73:84–94
CAS
PubMed
CrossRef
Google Scholar
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296
CAS
PubMed
CrossRef
Google Scholar
Barbeira AN, Dickinson SP, Bonazzola R et al (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 9:1825
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57:289–300
Google Scholar
Bhattacharjee S, Rajaraman P, Jacobs KB et al (2012) A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet 90:821–835
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331
CAS
PubMed
PubMed Central
Google Scholar
Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36:1783–1802
PubMed
PubMed Central
CrossRef
Google Scholar
Brzyski D, Peterson CB, Sobczyk P, Candes EJ, Bogdan M, Sabatti C (2017) Controlling the rate of GWAS false discoveries. Genetics 205:61–75
PubMed
CrossRef
Google Scholar
Bulik-Sullivan B, Loh P-R, Finucane H et al (2015) LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Buniello A, MacArthur JAL, Cerezo M et al (2019) The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012
CAS
PubMed
CrossRef
Google Scholar
Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665
PubMed
PubMed Central
CrossRef
Google Scholar
Burton PR, Clayton DG, Cardon LR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678
CAS
CrossRef
Google Scholar
Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86:6–22
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cardin NJ, Mefford JA, Witte JS (2012) Joint association testing of common and rare genetic variants using hierarchical modeling. Genet Epidemiol 36:642–651
PubMed
PubMed Central
CrossRef
Google Scholar
Carlson CS, Matise TC, North KE et al (2013) Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol 11:e1001661
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chanock SJ, Manolio T, Boehnke M et al (2007) Replicating genotype-phenotype associations. Nature 447:655–660
CAS
PubMed
CrossRef
Google Scholar
Chen GK, Witte JS (2007) Enriching the analysis of genomewide association studies with hierarchical modeling. Am J Hum Genet 81:397–404
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen H, Lumley T, Brody J et al (2014) Sequence kernel association test for survival traits. Genet Epidemiol 38:191–197
PubMed
PubMed Central
CrossRef
Google Scholar
Chen H, Huffman JE, Brody JA et al (2019) Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies. Am J Hum Genet 104:260–274
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Choi M, Scholl UI, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:19096–19101
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT (2011) Basic statistical analysis in genetic case-control studies. Nat Protoc 6:121–133
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Claussnitzer M, Cho JH, Collins R et al (2020) A brief history of human disease genetics. Nature 577:179–189
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Clayton DG (2009) Sex chromosomes and genetic association studies. Genome Med 1:110
PubMed
PubMed Central
CrossRef
Google Scholar
Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366:1121–1131
PubMed
CrossRef
Google Scholar
Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232
CAS
PubMed
CrossRef
Google Scholar
Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004
CAS
PubMed
CrossRef
Google Scholar
Dick DM, Agrawal A, Keller MC et al (2015) Candidate gene-environment interaction research: reflections and recommendations. Perspect Psychol Sci 10:37–59
PubMed
PubMed Central
CrossRef
Google Scholar
Dinu I, Potter JD, Mueller T et al (2009) Gene-set analysis and reduction. Brief Bioinform 10:24–34
CAS
PubMed
CrossRef
Google Scholar
Dutta D, Scott L, Boehnke M, Lee S (2019) Multi-SKAT: general framework to test for rare-variant association with multiple phenotypes. Genet Epidemiol 43:4–23
PubMed
CrossRef
Google Scholar
Elbers CC, van der Schouw YT, Wijmenga C, Onland-Moret NC (2009a) Comment on: Perry et al. (2009) interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes 58:1463–1467. e9; author reply e10
Google Scholar
Elbers CC, van Eijk KR, Franke L et al (2009b) Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33:419–431
PubMed
CrossRef
Google Scholar
Evangelou E, Ioannidis JPA (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389
CAS
PubMed
CrossRef
Google Scholar
Evangelou M, Dudbridge F, Wernisch L (2014) Two novel pathway analysis methods based on a hierarchical model. Bioinformatics 30:690–697
CAS
PubMed
CrossRef
Google Scholar
Evangelou E, Warren HR, Mosen-Ansorena D et al (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50:1412–1425
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
CAS
PubMed
PubMed Central
Google Scholar
Fehringer G, Kraft P, Pharoah PD et al (2016) Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res 76:5103–5114
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861
CAS
PubMed
CrossRef
Google Scholar
Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251
CAS
PubMed
CrossRef
Google Scholar
Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229
CAS
PubMed
CrossRef
Google Scholar
Gamazon ER, Wheeler HE, Shah KP et al (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47:1091–1098
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Genovese CR, Roeder K, Wasserman L (2006) False discovery control with p-value weighting. Biometrika 93:509–524
CrossRef
Google Scholar
Gilbert W, Maxam A (1973) The nucleotide sequence of the lac operator. Proc Natl Acad Sci USA 70:3581–3584
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Gnirke A, Melnikov A, Maguire J et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Goring HH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69:1357–1369
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82:100–112
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gray R, Wheatley K (1991) How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant 7(Suppl 3):9–12
PubMed
Google Scholar
Greenwood CM, Rangrej J, Sun L (2007) Optimal selection of markers for validation or replication from genome-wide association studies. Genet Epidemiol 31:396–407
PubMed
CrossRef
Google Scholar
Guey LT, Kravic J, Melander O et al (2011) Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants. Genet Epidemiol 35:236–246
PubMed
Google Scholar
Gusev A, Ko A, Shi H et al (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48:245–252
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382
CAS
PubMed
CrossRef
Google Scholar
Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88:586–598
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey SG (2016) Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 103:965–978
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Hirschhorn JN, Altshuler D (2002) Once and again-issues surrounding replication in genetic association studies. J Clin Endocrinol Metab 87:4438–4441
CAS
PubMed
CrossRef
Google Scholar
Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61
CAS
PubMed
CrossRef
Google Scholar
Ho LA, Lange EM (2010) Using public control genotype data to increase power and decrease cost of case–control genetic association studies. Hum Genet 128:597–608
PubMed
PubMed Central
CrossRef
Google Scholar
Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527
CAS
PubMed
CrossRef
Google Scholar
Hoffmann TJ, Kvale MN, Hesselson SE et al (2011a) Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics 98:79–89
CAS
PubMed
CrossRef
Google Scholar
Hoffmann TJ, Zhan Y, Kvale MN et al (2011b) Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics 98:422–430
CAS
PubMed
CrossRef
Google Scholar
Hoffmann TJ, Van Den Eeden SK, Sakoda LC et al (2015) A large multiethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences. Cancer Discov 5:878–891
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hoffmann TJ, Passarelli MN, Graff RE et al (2017) Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat Commun 8:14248
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hong MG, Pawitan Y, Magnusson PK, Prince JA (2009) Strategies and issues in the detection of pathway enrichment in genome-wide association studies. Hum Genet 126:289–301
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hong J, Lunetta KL, Cupples LA, Dupuis J, Liu CT (2016) Evaluation of a two-stage approach in trans-ethnic meta-analysis in genome-wide association studies. Genet Epidemiol 40:284–292
PubMed
PubMed Central
CrossRef
Google Scholar
Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44:955–959
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Huang BE, Lin DY (2007) Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet 80:567–576
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Huang L, Li Y, Singleton AB et al (2009) Genotype-imputation accuracy across worldwide human populations. Am J Hum Genet 84:235–250
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Huang QQ, Ritchie SC, Brozynska M, Inouye M (2018) Power, false discovery rate and Winner’s curse in eQTL studies. Nucleic Acids Res 46:e133
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11:193–206
PubMed
CrossRef
Google Scholar
International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796
Google Scholar
International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320
Google Scholar
Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2:e124
PubMed
PubMed Central
CrossRef
Google Scholar
Ioannidis JP (2006) Common genetic variants for breast cancer: 32 largely refuted candidates and larger prospects. J Natl Cancer Inst 98:1350–1353
CAS
PubMed
CrossRef
Google Scholar
Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309
CAS
PubMed
CrossRef
Google Scholar
Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X (2013) Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet 92:841–853
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jorgenson E, Witte JS (2006) Coverage and power in genomewide association studies. Am J Hum Genet 78:884–888
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Karlsson Linner R, Biroli P, Kong E et al (2019) Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet 51:245–257
CAS
PubMed
CrossRef
Google Scholar
Katan MB (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1:507–508
CAS
PubMed
CrossRef
Google Scholar
Kraft P, Wacholder S, Cornelis MC et al (2009) Beyond odds ratios—communicating disease risk based on genetic profiles. Nat Rev Genet 10:264–269
CAS
PubMed
CrossRef
Google Scholar
Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921
CAS
PubMed
CrossRef
Google Scholar
Larson NB, McDonnell S, Cannon Albright L et al (2017) gsSKAT: rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels. Genet Epidemiol 41:297–308
PubMed
PubMed Central
CrossRef
Google Scholar
Lee S, Emond MJ, Bamshad MJ et al (2012) Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 91:224–237
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lettre G, Lange C, Hirschhorn JN (2007) Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol 31:358–362
PubMed
CrossRef
Google Scholar
Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311–321
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Li R, Conti DV, Diaz-Sanchez D, Gilliland F, Thomas DC (2012) Joint analysis for integrating two related studies of different data types and different study designs using hierarchical modeling approaches. Hum Hered 74:83–96
CAS
PubMed
CrossRef
Google Scholar
Li Z, Li X, Liu Y et al (2019) Dynamic scan procedure for detecting rare-variant association regions in whole-genome sequencing studies. Am J Hum Genet 104:802–814
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lindquist KJ, Jorgenson E, Hoffmann TJ, Witte JS (2013) The impact of improved microarray coverage and larger sample sizes on future genome-wide association studies. Genet Epidemiol 37:383–392
PubMed
PubMed Central
CrossRef
Google Scholar
Liu M, Jiang Y, Wedow R et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lloyd-Jones LR, Robinson MR, Yang J, Visscher PM (2018) Transformation of summary statistics from linear mixed model association on all-or-none traits to odds ratio. Genetics 208:1397–1408
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Loh PR, Tucker G, Bulik-Sullivan BK et al (2015) Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet 47:284–290
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182
CAS
PubMed
CrossRef
Google Scholar
Luca D, Ringquist S, Klei L et al (2008) On the use of general control samples for genome-wide association studies: genetic matching highlights causal variants. Am J Hum Genet 82:453–463
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Magi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11:288
PubMed
PubMed Central
CrossRef
Google Scholar
Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21
CAS
PubMed
CrossRef
Google Scholar
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26:2867–2873
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Marchini J, Howie B (2008) Comparing algorithms for genotype imputation. Am J Hum Genet 83:535–539. author reply 539-540
PubMed
PubMed Central
CrossRef
Google Scholar
Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913
CAS
PubMed
CrossRef
Google Scholar
Marquez A, Kerick M, Zhernakova A et al (2018) Meta-analysis of immunochip data of four autoimmune diseases reveals novel single-disease and cross-phenotype associations. Genome Med 10:97
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mavaddat N, Michailidou K, Dennis J et al (2019) Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am J Hum Genet 104:21–34
CAS
PubMed
CrossRef
Google Scholar
McAllister K, Mechanic LE, Amos C et al (2017) Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol 186:753–761
PubMed
PubMed Central
CrossRef
Google Scholar
Mefford J, Witte JS (2012) The covariate’s dilemma. PLoS Genet 8:e1003096
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mitchell BD, Fornage M, McArdle PF et al (2014) Using previously genotyped controls in genome-wide association studies (GWAS): application to the stroke genetics network (SiGN). Front Genet 5
Google Scholar
Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28–56
CAS
PubMed
CrossRef
Google Scholar
Morris AP (2011) Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 35:809–822
PubMed
PubMed Central
CrossRef
Google Scholar
Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188–193
PubMed
CrossRef
Google Scholar
Motsinger AA, Ritchie MD (2006) Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics 2:318–328
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mutsuddi M, Morris DW, Waggoner SG, Daly MJ, Scolnick EM, Sklar P (2006) Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia. Am J Hum Genet 79:903–909
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nam D, Kim SY (2008) Gene-set approach for expression pattern analysis. Brief Bioinform 9:189–197
PubMed
CrossRef
Google Scholar
Neale BM, Rivas MA, Voight BF et al (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7:e1001322
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nelson SC, Doheny KF, Pugh EW et al (2013) Imputation-based genomic coverage assessments of current human genotyping arrays. G3 (Bethesda) 3:1795–1807
CrossRef
CAS
Google Scholar
Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nolte IM, van der Most PJ, Alizadeh BZ et al (2017) Missing heritability: is the gap closing? An analysis of 32 complex traits in the lifelines cohort study. Eur J Hum Genet 25:877–885
PubMed
PubMed Central
CrossRef
Google Scholar
Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Paltoo DN, Rodriguez LL, Feolo M et al (2014) Data use under the NIH GWAS data sharing policy and future directions. Nat Genet 46:934–938
PubMed
CrossRef
CAS
Google Scholar
Pan W (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epidemiol 33:497–507
PubMed
PubMed Central
CrossRef
Google Scholar
Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JPA (2013) The power of meta-analysis in genome-wide association studies. Annu Rev Genomics Hum Genet 14:441–465
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184
PubMed
PubMed Central
CrossRef
Google Scholar
Pirinen M, Donnelly P, Spencer CC (2012) Including known covariates can reduce power to detect genetic effects in case-control studies. Nat Genet 44:848–851
CAS
PubMed
CrossRef
Google Scholar
Piro RM, Di Cunto F (2012) Computational approaches to disease-gene prediction: rationale, classification and successes: computational disease-gene prediction. FEBS J 279:678–696
CAS
PubMed
CrossRef
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909
CAS
PubMed
CrossRef
Google Scholar
Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rava M, Ahmed I, Demenais F, Sanchez M, Tubert-Bitter P, Nadif R (2013) Selection of genes for gene-environment interaction studies: a candidate pathway-based strategy using asthma as an example. Environ Health 12:56
PubMed
PubMed Central
CrossRef
Google Scholar
Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517
CAS
CrossRef
PubMed
Google Scholar
Ritchie MD, Hahn LW, Roodi N et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157
PubMed
CrossRef
Google Scholar
Roeder K, Wasserman L (2009) Genome-wide significance levels and weighted hypothesis testing. Stat Sci 24:398–413
PubMed
PubMed Central
CrossRef
Google Scholar
Roeder K, Bacanu SA, Wasserman L, Devlin B (2006) Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78:243–252
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roshan U, Chikkagoudar S, Wei Z, Wang K, Hakonarson H (2011) Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest. Nucleic Acids Res 39:e62–e62
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Santorico SA, Hendricks AE (2016) Progress in methods for rare variant association. BMC Genet 17(Suppl 2):6
PubMed
PubMed Central
CrossRef
Google Scholar
Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3:e114
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Sinnott JA, Kraft P (2012) Artifact due to differential error when cases and controls are imputed from different platforms. Hum Genet 131:111–119
PubMed
CrossRef
Google Scholar
Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213
CAS
PubMed
CrossRef
Google Scholar
Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage genome-wide association studies. Genet Epidemiol 31:776–788
PubMed
CrossRef
Google Scholar
Smith GD, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22
CrossRef
PubMed
Google Scholar
Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10:681–690
CAS
PubMed
CrossRef
Google Scholar
Sun R, Hui S, Bader GD, Lin X, Kraft P (2019) Powerful gene set analysis in GWAS with the generalized Berk-Jones statistic. PLoS Genet 15:e1007530
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Teer JK, Mullikin JC (2010) Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet 19:R145–R151
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Thomas D (2010) Methods for investigating gene-environment interactions in candidate pathway and genome-wide association studies. Annu Rev Public Health 31:21–36
PubMed
PubMed Central
CrossRef
Google Scholar
Thomas DC, Haile RW, Duggan D (2005) Recent developments in genomewide association scans: a workshop summary and review. Am J Hum Genet 77:337–345
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Thomas DC, Casey G, Conti DV, Haile RW, Lewinger JP, Stram DO (2009) Methodological issues in multistage genome-wide association studies. Stat Sci 24:414
PubMed
PubMed Central
CrossRef
Google Scholar
Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci USA 102:13544–13549
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Toland AE (2019) Polygenic risk scores for prostate cancer: testing considerations. Can J Urol 26:17–18
PubMed
Google Scholar
Torkamani A, Wineinger NE, Topol EJ (2018) The personal and clinical utility of polygenic risk scores. Nat Rev Genet 19:581–590
CAS
PubMed
CrossRef
Google Scholar
Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351
CAS
PubMed
CrossRef
Google Scholar
Wacholder S, McLaughlin JK, Silverman DT, Mandel JS (1992) Selection of controls in case-control studies. I Principles. Am J Epidemiol 135:1019–1028
CAS
PubMed
CrossRef
Google Scholar
Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442
PubMed
PubMed Central
CrossRef
Google Scholar
Wang DG, Fan JB, Siao CJ et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082
CAS
PubMed
CrossRef
Google Scholar
Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11:843–854
CAS
PubMed
CrossRef
Google Scholar
Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z (2011) Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics 98:1–8
CAS
PubMed
CrossRef
Google Scholar
Ware JH (2006) The limitations of risk factors as prognostic tools. N Engl J Med 355:2615–2617
CAS
PubMed
CrossRef
Google Scholar
Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850
CAS
CrossRef
Google Scholar
Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Witte JS (1997) Genetic analysis with hierarchical models. Genet Epidemiol 14:1137–1142
CAS
PubMed
CrossRef
Google Scholar
Witte JS, Greenland S (1996) Simulation study of hierarchical regression. Stat Med 15:1161–1170
CAS
PubMed
CrossRef
Google Scholar
Witte JS, Elston RC, Schork NJ (1996) Genetic dissection of complex traits. Nat Genet 12:355–356. author reply 357–358
CAS
PubMed
CrossRef
Google Scholar
Witte JS, Elston RC, Cardon LR (2000) On the relative sample size required for multiple comparisons. Stat Med 19:369–372
CAS
PubMed
CrossRef
Google Scholar
Wojcik GL, Fuchsberger C, Taliun D et al (2018) Imputation-aware tag SNP selection to improve power for large-scale, multi-ethnic association studies. G3 (Bethesda) 8:3255–3267
CrossRef
Google Scholar
Wu R, Kaiser AD (1968) Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol 35:523–537
CAS
PubMed
CrossRef
Google Scholar
Wu Michael C, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu R, Taylor E (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol 57:491–511
CAS
PubMed
CrossRef
Google Scholar
Wu MC, Kraft P, Epstein MP et al (2010) Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 86:929–942
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu MC, Maity A, Lee S et al (2013) Kernel machine SNP-set testing under multiple candidate kernels. Genet Epidemiol 37:267–275
PubMed
PubMed Central
CrossRef
Google Scholar
Xing C, Huang J, Hsu YH et al (2016) Evaluation of power of the Illumina HumanOmni5M-4v1 BeadChip to detect risk variants for human complex diseases. Eur J Hum Genet 24:1029–1034
CAS
PubMed
CrossRef
Google Scholar
Xiong M, Guo SW (1997) Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am J Hum Genet 60:1513–1531
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zaitlen N, Lindstrom S, Pasaniuc B et al (2012) Informed conditioning on clinical covariates increases power in case-control association studies. PLoS Genet 8:e1003032
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zollner S (2010) Extending rare-variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87:604–617
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10:191–201
PubMed
CrossRef
Google Scholar
Zhang Z, Ersoz E, Lai CQ et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhu Z, Lee PH, Chaffin MD et al (2018) A genome-wide cross-trait analysis from UK biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet 50:857–864
CAS
PubMed
PubMed Central
CrossRef
Google Scholar