Skip to main content

Linkage Disequilibrium

  • 529 Accesses

Abstract

Linkage disequilibrium (LD) is the nonrandom association between alleles at closely linked loci. LD is created by genetic drift and natural selection, and it decays exponentially with time at a rate proportional to the recombination rate. This chapter reviews the theory of LD between pairs of loci and the use of LD for detecting past episodes of selection and for gene mapping.

Keywords

  • Genetic mapping
  • Allele age
  • Natural selection
  • Epistasis
  • Linkage equilibrium

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61646-5_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-61646-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3

References

  • Consortium H (2003) The international HapMap project. Nature 426:789–796

    CrossRef  Google Scholar 

  • Consortium IH (2005) A haplotype map of the human genome. Nature 437:1299–1320

    CrossRef  Google Scholar 

  • Consortium IH (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    CrossRef  Google Scholar 

  • Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nature 29:229–232

    CAS  Google Scholar 

  • Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theo Popul Biol 60:155–166

    CAS  CrossRef  Google Scholar 

  • Felsenstein J (1965) The effect of linkage on directional selection. Genetics 52:349–363

    CAS  CrossRef  Google Scholar 

  • Geiringer H (1944) On the probability theory of linkage in Mendelian heredity. Ann Math Stat 15:25–57

    CrossRef  Google Scholar 

  • HapMap3 (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    CrossRef  Google Scholar 

  • Hedrick PW, Thomson G, Klitz W (1986) Evolutionary genetics: HLA as an exemplary system. Academic, New York

    Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    CAS  CrossRef  Google Scholar 

  • Hubby JL, Lewontin RC (1966) A molecular approach to study of genic heterozygosity in natural populations. I. Number of alleles at different loci in Drosophila Pseudoobscura. Genetics 54:577–594

    CAS  CrossRef  Google Scholar 

  • Karlin S, Feldman MW (1970) Linkage and selection: two locus symmetric viability model. Theo Popul Biol 1:39–71

    CAS  CrossRef  Google Scholar 

  • Lander ES (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  CrossRef  Google Scholar 

  • Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    CAS  CrossRef  Google Scholar 

  • Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex polymorphisms. Evolution 14:458–472

    Google Scholar 

  • Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23:23–35

    CrossRef  Google Scholar 

  • Mitton JB, Koehn RK, Prout T (1973) Population genetics of marine pelecypods. 3. Epistasis between functionally related isoenzymes of Mytilus-Edulis. Genetics 73:487–496

    CAS  CrossRef  Google Scholar 

  • Nei M, Li W (1973) Linkage disequilibrium in subdivided populations. Genetics 75:213–219

    CAS  CrossRef  Google Scholar 

  • Ohta T, Kimura M (1969) Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics 63:229–238

    CAS  CrossRef  Google Scholar 

  • Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204

    CAS  CrossRef  Google Scholar 

  • Robinson WP, Cambon-Thomsen A, Borot N, Klitz W, Thomson G (1991) Selection, hitchhiking and disequilibrium analysis at three linked loci with application to HLA data. Genetics 129:931–948

    CAS  CrossRef  Google Scholar 

  • Saunders MA, Slatkin M, Garner C, Hammer MF, Nachman MW (2005) The span of linkage disequilibrium caused by selection on G6PD in humans. Genetics 171:1219–1229

    CAS  CrossRef  Google Scholar 

  • Slatkin M (2008) A Bayesian method for jointly estimating allele age and selection intensity. Genet Res 90:129–137

    CAS  CrossRef  Google Scholar 

  • Weir BS (1996) Genetic data analysis II, Sunderland, Sinauer

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montgomery Slatkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Slatkin, M. (2021). Linkage Disequilibrium. In: Lohmueller, K.E., Nielsen, R. (eds) Human Population Genomics. Springer, Cham. https://doi.org/10.1007/978-3-030-61646-5_2

Download citation