Skip to main content

Bitcoin Blockchain Steganographic Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12418))

Abstract

Steganography has been used as a way to hide data in files or in messages traveling on communication channels. Its use can be worrisome when it is used without proper authorization. Recently, it has been detected that there are arbitrary files included in the public blockchain of the Bitcoin cryptocurrency. The main concern arises when such data inserted contains objectionable content, thus compromising blockchain platforms. In this context, this paper presents an analysis of the Blockchain of Bitcoin, based on some proposals for the use of steganography in blockchains and on detection methods of steganographic data. Additionally, it is shown that we found no evidence of steganography data in Bitcoin using these techniques. We conclude by showing that there is no specific approach, so far, for steganalysis in blockchains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://bitslog.com/2013/09/03/new-mystery-about-satoshi/.

References

  1. Alsalami, N., Zhang, B.: Uncontrolled randomness in blockchains: Covert bulletin board for illicit activity. Cryptology ePrint Archive (2018). ia.cr/2018/1184

  2. Alsalami, N., Zhang, B.: Utilizing public blockchains for censorship-circumvention and iot communication. In: 2019 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–7. IEEE (2019)

    Google Scholar 

  3. Andoni, M., et al.: Blockchain technology in the energy sector: a systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 100, 143–174 (2019)

    Article  Google Scholar 

  4. Andriesse, D., Bos, H.: Instruction-level steganography for covert trigger-based malware. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 41–50. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08509-8_3

    Chapter  Google Scholar 

  5. Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain. O’Reilly Media Inc., Newton (2017)

    Google Scholar 

  6. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain-or-rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 111–126. IEEE (2017)

    Google Scholar 

  7. Bąk, P., Bieniasz, J., Krzemiński, M., Szczypiorski, K.: Application of perfectly undetectable network steganography method for malware hidden communication. In: 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), pp. 34–38. IEEE (2018)

    Google Scholar 

  8. Bassham, L.E., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, National Institute of Standards and Technology (NIST) (2010)

    Google Scholar 

  9. Berndt, S., Liśkiewicz, M.: Provable secure universal steganography of optimal rate: Provably secure steganography does not necessarily imply one-way functions. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 81–92. ACM (2016)

    Google Scholar 

  10. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_21

    Chapter  Google Scholar 

  11. Cole, E.: Hiding in Plain Sight. Wiley, Hoboken (2002)

    Google Scholar 

  12. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.: Blockchain technology: Beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)

    Google Scholar 

  13. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_44

    Chapter  Google Scholar 

  14. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the use of blockchain for the internet of things. IEEE Access 6, 32979–33001 (2018)

    Article  Google Scholar 

  15. Fionov, A.: Exploring covert channels in bitcoin transactions. In: 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), pp. 0059–0064. IEEE (2019)

    Google Scholar 

  16. Von zur Gathen, J.: Cryptoschool. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48425-8

  17. Henry, R., Herzberg, A., Kate, A.: Blockchain access privacy: challenges and directions. IEEE Secur. Priv. 16(4), 38–45 (2018). https://doi.org/10.1109/MSP.2018.3111245

    Article  Google Scholar 

  18. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_6

    Chapter  Google Scholar 

  19. Kucner, D., Kutylowski, M.: Stochastic kleptography detection. In: Public-Key Cryptography and Computational Number Theory, pp. 137–149 (2001)

    Google Scholar 

  20. Matzutt, R., Henze, M., Ziegeldorf, J.H., Hiller, J., Wehrle, K.: Thwarting unwanted blockchain content insertion. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 364–370. IEEE (2018)

    Google Scholar 

  21. Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary blockchain content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_23

  22. Mazurczyk, W., Caviglione, L.: Information hiding as a challenge for malware detection (2015). arXiv preprint arXiv:1504.04867

  23. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)

    Google Scholar 

  24. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  25. OpenSSL.org.: OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/

  26. Partala, J.: Provably secure covert communication on blockchain. Cryptography 2(3), 18 (2018)

    Article  Google Scholar 

  27. Provos, N., Honeyman, P.: Hide and seek: an introduction to steganography. IEEE Secur. Priv. 1(3), 32–44 (2003)

    Article  Google Scholar 

  28. Puthal, D., Malik, N., Mohanty, S.P., Kougianos, E., Das, G.: Everything you wanted to know about the blockchain: its promise, components, processes, and problems. IEEE Consum. Electron. Mag. 7(4), 6–14 (2018)

    Article  Google Scholar 

  29. Radanović, I., Likić, R.: Opportunities for use of blockchain technology in medicine. Appl. Health Econ. Health Policy 16(5), 583–590 (2018)

    Article  Google Scholar 

  30. Raggo, M.T., Hosmer, C.: Data hiding: exposing concealed data in multimedia, operating systems, mobile devices and network protocols. Newnes (2012)

    Google Scholar 

  31. Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In: DFRWS (2005)

    Google Scholar 

  32. Scott, B., Loonam, J., Kumar, V.: Exploring the rise of blockchain technology: towards distributed collaborative organizations. Strat. Change 26(5), 423–428 (2017)

    Article  Google Scholar 

  33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  34. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_29

    Chapter  Google Scholar 

  35. Stallings, W.: Cryptography and Network Security: Principles and Practice, 7th edn. Pearson, Upper Saddle River (2017)

    Google Scholar 

  36. Teşeleanu, G.: Subliminal hash channels. Cryptology ePrint Archive, Report 2019/1112 (2019)

    Google Scholar 

  37. Walker, J.: Ent: a pseudorandom number sequence test program. Software and documentation (2008). http://www.fourmilab.ch/random/

  38. Williams, S.P.: Blockchain: The Next Everything. Scribner, New York (2019)

    Google Scholar 

  39. Wu, C.K.: Hash channels. Comput. Secur. 24(8), 653–661 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Augusto Giron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giron, A.A., Martina, J.E., Custódio, R. (2020). Bitcoin Blockchain Steganographic Analysis. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2020. Lecture Notes in Computer Science(), vol 12418. Springer, Cham. https://doi.org/10.1007/978-3-030-61638-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61638-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61637-3

  • Online ISBN: 978-3-030-61638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics