Skip to main content

Exploration via Progress-Driven Intrinsic Rewards

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

Abstract

Traditional exploration methods in reinforcement learning rely on well-designed extrinsic rewards. However, many real-world scenarios involve sparse or delayed rewards. One solution inspired by curious behaviors in animals is to let the agent develop its own intrinsic rewards. In this paper we propose a novel end-to-end curiosity mechanism which uses learning progress as novelty bonus. We compare a policy-based and a visual-based progress bonus to move the agent towards hard-to-learn regions of the state space. We further leverage the agent’s learning to identify the most critical regions, which results in more sample-efficient and global exploration strategies. We evaluate our method on a variety of benchmark environments, including Minigrid, Super Mario Bros., and Atari games. Experimental results show that our method outperforms prior approaches in most tasks in terms of exploration efficiency and average scores, especially for those featuring high-level exploration patterns or with deceptive rewards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. JAIR 47, 253–279 (2013)

    Article  Google Scholar 

  2. Bougie, N., Ichise, R.: Skill-based curiosity for intrinsically motivated reinforcement learning. Mach. Learn. 109(3), 493–512 (2019). https://doi.org/10.1007/s10994-019-05845-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network distillation. arXiv preprint:1810.12894 (2018)

    Google Scholar 

  4. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment for openAI gym (2018). https://github.com/maximecb/gym-minigrid

  5. Florensa, C., Held, D., Geng, X., Abbeel, P.: Automatic goal generation for reinforcement learning agents. arXiv preprint:1705.06366 (2017)

    Google Scholar 

  6. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint:1801.01290 (2018)

    Google Scholar 

  7. Hong, Z.W., Shann, T.Y., Su, S.Y., Chang, Y.H., Fu, T.J., Lee, C.Y.: Diversity-driven exploration strategy for deep reinforcement learning. In: NIPS (2018)

    Google Scholar 

  8. Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., Abbeel, P.: Variational information maximizing exploration. In: NIPS, pp. 1109–1117 (2016)

    Google Scholar 

  9. Kaelbling, L.P.: Learning to achieve goals. In: IJCAI, pp. 1094–1098 (1993)

    Google Scholar 

  10. Kauten, C.: Super mario bros for openAI gym. https://github.com/Kautenja/gym-super-mario-bros (2018)

  11. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)

    Google Scholar 

  12. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint:1509.02971 (2015)

    Google Scholar 

  13. Machado, M., Bellemare, M., Bowling, M.: Count-based exploration with the successor representation. arXiv preprint:1807.11622 (2018)

    Google Scholar 

  14. Mnih, V., et al.: Asynchronous methods for DRL. In: ICML, pp. 1928–1937 (2016)

    Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  16. Nair, A.V., Pong, V., Dalal, M., Bahl, S., Lin, S., Levine, S.: Visual reinforcement learning with imagined goals. In: ICML, pp. 9191–9200 (2018)

    Google Scholar 

  17. Ostrovski, G., Bellemare, M.G., van den Oord, A., Munos, R.: Count-based exploration with neural density models. In: ICML, pp. 2721–2730 (2017)

    Google Scholar 

  18. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. In: ICML (2017)

    Google Scholar 

  19. Savinov, N., et al.: Episodic curiosity through reachability. In: ICLR (2019)

    Google Scholar 

  20. Schaul, T., Horgan, D., Gregor, K., Silver, D.: Universal value function approximators. In: Proceedings of the International conference on Machine Learning (2015)

    Google Scholar 

  21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint:1707.06347 (2017)

    Google Scholar 

  22. Stanton, C., Clune, J.: Deep curiosity search: intra-life exploration improves performance on challenging deep reinforcement learning problems. In: ICML (2019)

    Google Scholar 

  23. Tang, H., et al.: Exploration: a study of count-based exploration for deep reinforcement learning. In: NIPS, pp. 2753–2762 (2017)

    Google Scholar 

  24. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.: Dueling network architectures for deep reinforcement learning. In: ICML (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bougie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bougie, N., Ichise, R. (2020). Exploration via Progress-Driven Intrinsic Rewards. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics