Skip to main content

Analysis and Prediction of Deforming 3D Shapes Using Oriented Bounding Boxes and LSTM Autoencoders

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Abstract

For sequences of complex 3D shapes in time we present a general approach to detect patterns for their analysis and to predict the deformation by making use of structural components of the complex shape. We incorporate long short-term memory (LSTM) layers into an autoencoder to create low dimensional representations that allow the detection of patterns in the data and additionally detect the temporal dynamics in the deformation behavior. This is achieved with two decoders, one for reconstruction and one for prediction of future time steps of the sequence. In a preprocessing step the components of the studied object are converted to oriented bounding boxes which capture the impact of plastic deformation and allow reducing the dimensionality of the data describing the structure. The architecture is tested on the results of 196 car crash simulations of a model with 133 different components, where material properties are varied. In the latent representation we can detect patterns in the plastic deformation for the different components. The predicted bounding boxes give an estimate of the final simulation result and their quality is improved in comparison to different baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    From NCAC http://web.archive.org/web/*/www.ncac.gwu.edu/vml/models.html.

  2. 2.

    Computed with LS-DYNa http://www.lstc.com/products/ls-dyna.

  3. 3.

    Implemented in Keras [5], no peephole connections.

References

  1. Bohn, B., Garcke, J., Griebel, M.: A sparse grid based method for generative dimensionality reduction of high-dimensional data. J. Comput. Phys. 309, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bohn, B., et al.: Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Comput. Sci. 18, 621–630 (2013)

    Article  Google Scholar 

  3. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  4. Chang, C.T., Gorissen, B., Melchior, S.: Fast oriented bounding box optimization on the rotation group \(SO(3,\mathbb{R})\). ACM TOG 30(5), 122 (2011)

    Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://keras.io

  6. Dimitrov, D., Knauer, C., Kriegel, K., Rote, G.: Bounds on the quality of the PCA bounding boxes. Comput. Geom. 42(8), 772–789 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gao, L., Lai, Y.K., Yang, J., Ling-Xiao, Z., Xia, S., Kobbelt, L.: Sparse data driven mesh deformation. IEEE Trans. Vis. Comput. Graph. 1 (2019). https://doi.org/10.1109/TVCG.2019.2941200

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. Graening, L., Sendhoff, B.: Shape mining: a holistic data mining approach for engineering design. Adv. Eng. Inform. 28(2), 166–185 (2014)

    Article  Google Scholar 

  11. Graves, A.: Generating sequences with recurrent neural networks. arXiv:1308.0850 (2013)

  12. Guennec, Y.L., Brunet, J.P., Daim, F.Z., Chau, M., Tourbier, Y.: A parametric and non-intrusive reduced order model of car crash simulation. Comput. Methods Appl. Mech. Eng. 338, 186–207 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975). Second edition (1992)

    Google Scholar 

  15. Iza-Teran, R., Garcke, J.: A geometrical method for low-dimensional representations of simulations. SIAM/ASA J. Uncertain. Quantif. 7(2), 472–496 (2019)

    Article  MathSciNet  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015). arXiv:1412.6980

  17. Litany, O., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.: Deep functional maps: structured prediction for dense shape correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5659–5667 (2017)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  19. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: CVPR, pp. 5115–5124 (2017)

    Google Scholar 

  20. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  21. O’Rourke, J.: Finding minimal enclosing boxes. Int. J. Comput. Inf. Sci. 14(3), 183–199 (1985)

    Article  MathSciNet  Google Scholar 

  22. Qiao, Y.L., Gao, L., Lai, Y.K., Xia, S.: Learning bidirectional LSTM networks for synthesizing 3D mesh animation sequences. arXiv:1810.02042 (2018)

  23. von Rueden, L., Mayer, S., Sifa, R., Bauckhage, C., Garcke, J.: Combining machine learning and simulation to a hybrid modelling approach: current and future directions. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol. 12080, pp. 548–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44584-3_43

    Chapter  Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  25. Sprügel, T., Schröppel, T., Wartzack, S.: Generic approach to plausibility checks for structural mechanics with deep learning. In: DS 87-1 Proceedings of the 21st International Conference on Engineering Design, vol. 1, pp. 299–308 (2017)

    Google Scholar 

  26. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML, Lille, France, vol. 37, pp. 843–852 (2015)

    Google Scholar 

  27. Steffes-lai, D.: Approximation Methods for High Dimensional Simulation Results-Parameter Sensitivity Analysis and Propagation of Variations for Process Chains. Logos Verlag Berlin GmbH (2014)

    Google Scholar 

  28. Söderkvist, I., Wedin, P.Å.: On condition numbers and algorithms for determining a rigid body movement. BIT Numer. Math. 34(3), 424–436 (1994)

    Article  MathSciNet  Google Scholar 

  29. Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3D mesh models. In: CVPR, pp. 5841–5850 (2018)

    Google Scholar 

  30. Thole, C.A., Nikitina, L., Nikitin, I., Clees, T.: Advanced mode analysis for crash simulation results. In: Proceedings of 9th LS-DYNA Forum (2010)

    Google Scholar 

  31. Wan, J., Escalera, S., Perales, F.J., Kittler, J.: Articulated motion and deformable objects. Pattern Recogn. 79, 55–64 (2018)

    Article  Google Scholar 

  32. Zhao, Z., Xianlong, J., Cao, Y., Wang, J.: Data mining application on crash simulation data of occupant restraint system. Expert Syst. Appl. 37, 5788–5794 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Hahner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hahner, S., Iza-Teran, R., Garcke, J. (2020). Analysis and Prediction of Deforming 3D Shapes Using Oriented Bounding Boxes and LSTM Autoencoders. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics