Skip to main content

Hierarchical Modeling with Neurodynamical Agglomerative Analysis

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12396)

Abstract

We propose a new analysis technique for neural networks, Neurodynamical Agglomerative Analysis (NAA), an analysis pipeline designed to compare class representations within a given neural network model. The proposed pipeline results in a hierarchy of class relationships implied by the network representation, i.e. a semantic hierarchy analogous to a human-made ontological view of the relevant classes. We use networks pretrained on the ImageNet benchmark dataset to infer semantic hierarchies and show the similarity to human-made semantic hierarchies by comparing them with the WordNet ontology. Further, we show using MNIST training experiments that class relationships extracted using NAA appear to be invariant to random weight initializations, tending toward equivalent class relationships across network initializations in sufficiently parameterized networks.

Keywords

  • Neural network theory
  • Deep learning
  • Cognitive models

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - GRK 2340.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61609-0_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-61609-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Bach, S., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    CrossRef  Google Scholar 

  2. Raghu, M., et al.: SVCCA: singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  3. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    CrossRef  Google Scholar 

  4. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  5. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 231–243. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_10

    CrossRef  Google Scholar 

  6. Li, Y., et al.: Convergent learning: do different neural networks learn the same representations?. In: FE@ NIPS (2015)

    Google Scholar 

  7. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    CrossRef  Google Scholar 

  8. Jaeger, H.: Controlling recurrent neural networks by conceptors. arXiv preprint arXiv:1403.3369 (2014)

  9. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  12. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Marino, M., Schröter, G., Heidemann, G., Hertzberg, J. (2020). Hierarchical Modeling with Neurodynamical Agglomerative Analysis. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)