Abstract
The previously established LOUPE (Learning-based Optimization of the Under-sampling Pattern) framework for optimizing the k-space sampling pattern in MRI was extended in three folds: firstly, fully sampled multi-coil k-space data from the scanner, rather than simulated k-space data from magnitude MR images in LOUPE, was retrospectively under-sampled to optimize the under-sampling pattern of in-vivo k-space data; secondly, binary stochastic k-space sampling, rather than approximate stochastic k-space sampling of LOUPE during training, was applied together with a straight-through (ST) estimator to estimate the gradient of the threshold operation in a neural network; thirdly, modified unrolled optimization network, rather than modified U-Net in LOUPE, was used as the reconstruction network in order to reconstruct multi-coil data properly and reduce the dependency on training data. Experimental results show that when dealing with the in-vivo k-space data, unrolled optimization network with binary under-sampling block and ST estimator had better reconstruction performance compared to the ones with either U-Net reconstruction network or approximate sampling pattern optimization network, and once trained, the learned optimal sampling pattern worked better than the hand-crafted variable density sampling pattern when deployed with other conventional reconstruction methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, H.K., Mani, M.P., Jacob, M.: Modl: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)
Bahadir, C.D., Dalca, A.V., Sabuncu, M.R.: Learning-based optimization of the under-sampling pattern in MRI. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 780–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_61
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations Trends® Mach. Learn. 3(1), 1–122 (2011)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1
Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007). https://doi.org/10.1007/s10479-007-0176-2
Dennis Jr., J.E., Moré, J.J.: Quasi-newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)
Donoho, D.L., et al.: Nonlinear solution of linear inverse problems by Wavelet-Vaguelette decomposition. Appl. Comput. Harmonic Anal. 2(2), 101–126 (1995)
Feng, L., et al.: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn. Reson. Med. 72(3), 707–717 (2014)
Gözcü, B., et al.: Learning-based compressive MRI. IEEE Trans. Med. Imaging 37(6), 1394–1406 (2018)
Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)
Haldar, J.P., Kim, D.: OEDIPUS: an experiment design framework for sparsity-constrained MRI. IEEE Trans. Med. Imaging 38(7), 1545–1558 (2019)
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning. Coursera Video Lect. 264(1) (2012)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)
Knoll, F., Clason, C., Diwoky, C., Stollberger, R.: Adapted random sampling patterns for accelerated MRI. Magn. Reson. Mater. Phys. Biol. Med. 24(1), 43–50 (2011)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(l_1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)
Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)
Uecker, M., et al.: Berkeley advanced reconstruction toolbox. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 23 (2015)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
Vasanawala, S., et al.: Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body mri of pediatric patients. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1039–1043. IEEE (2011)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Zhang, J., et al.: Fidelity imposed network edit (fine) for solving ill-posed image reconstruction. NeuroImage 211, 116579 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J. et al. (2020). Extending LOUPE for K-Space Under-Sampling Pattern Optimization in Multi-coil MRI. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-61598-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61597-0
Online ISBN: 978-3-030-61598-7
eBook Packages: Computer ScienceComputer Science (R0)