Skip to main content

Model-Based Learning for Quantitative Susceptibility Mapping

  • Conference paper
  • First Online:
  • 1620 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12450))

Abstract

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that estimates magnetic susceptibility of tissue from Larmor frequency offset measurements. The generation of QSM requires solving a challenging ill-posed field-to-source inversion problem. Inaccurate field-to-source inversion often causes large susceptibility estimation errors that appear as streaking artifacts in the QSM, especially in massive hemorrhagic regions. Recently, several deep learning (DL) QSM techniques have been proposed and demonstrated impressive performance. Due to the inherent non-existent ground-truth QSM references, these DL techniques used either calculation of susceptibility through multiple orientation sampling (COSMOS) maps or synthetic data for network training. Therefore, they were constrained by the availability and accuracy of COSMOS maps, or suffered from performance drop when the training and testing domains were different. To address these limitations, we present a model-based DL method, denoted as uQSM. Without accessing to QSM labels, uQSM is trained using the well-established physical model. When evaluating on multi-orientation QSM datasets, uQSM achieves higher levels of quantitative accuracy compared to TKD, TV-FANSI, MEDI, and DIP approaches. When qualitatively evaluated on single-orientation datasets, uQSM outperforms other methods and reconstructed high quality QSM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  2. Bilgic, B., Chatnuntawech, I., Fan, A.P., et al.: Fast image reconstruction with L2-regularization. J. Magn. Reson. Imaging 40(1), 181–191 (2014)

    Article  Google Scholar 

  3. Bollmann, S., Rasmussen, K.G.B., Kristensen, M., et al.: DeepQSM-using deep learning to solve the dipole inversion for quantitative susceptibility mapping. NeuroImage 195, 373–383 (2019)

    Article  Google Scholar 

  4. Brett, M., Anton, J.L., Valabregue, R., et al.: Region of interest analysis using an SPM toolbox. In: 8th International Conference on Functional Mapping of the Human Brain, Sendai, p. 497 (2002)

    Google Scholar 

  5. Chen, Y., Jakary, A., Avadiappan, S., et al.: QSMGAN: improved quantitative susceptibility mapping using 3D generative adversarial networks with increased receptive field. NeuroImage 207, 116389 (2019)

    Article  Google Scholar 

  6. De Rochefort, L., Brown, R., Prince, M.R., et al.: Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn. Reson. Med. 60(4), 1003–1009 (2008)

    Article  Google Scholar 

  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  9. Haacke, E., Tang, J., Neelavalli, J., et al.: Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J. Magn. Reson. Imaging 32(3), 663–676 (2010)

    Article  Google Scholar 

  10. Jenkinson, M., Bannister, P., Brady, M., et al.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  11. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  12. Jung, W., Yoon, J., Ji, S., et al.: Exploring linearity of deep neural network trained QSM: QSMnet+. NeuroImage 211, 116619 (2020)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)

    Google Scholar 

  14. Li, W., Wu, B., Liu, C.: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage 55(4), 1645–1656 (2011)

    Article  Google Scholar 

  15. Liu, C.: Susceptibility tensor imaging. Magn. Reson. Med. 63(6), 1471–1477 (2010)

    Article  Google Scholar 

  16. Liu, J., Liu, T., de Rochefort, L., et al.: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. NeuroImage 59(3), 2560–2568 (2012)

    Article  Google Scholar 

  17. Liu, T., Liu, J., De Rochefort, L., et al.: Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn. Reson. Med. 66(3), 777–783 (2011)

    Article  Google Scholar 

  18. Liu, T., Spincemaille, P., De Rochefort, L., et al.: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn. Reson. Med. 61(1), 196–204 (2009)

    Article  Google Scholar 

  19. Liu, T., Wisnieff, C., Lou, M., et al.: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn. Reson. Med. 69(2), 467–476 (2013)

    Article  Google Scholar 

  20. Marques, J., Bowtell, R.: Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn. Reson. Part B Magn. Reson. Eng. 25(1), 65–78 (2005)

    Article  Google Scholar 

  21. Milovic, C., Bilgic, B., Zhao, B., et al.: Fast nonlinear susceptibility inversion with variational regularization. Magn. Reson. Med. 80(2), 814–821 (2018)

    Article  Google Scholar 

  22. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)

    Article  Google Scholar 

  23. Polak, D., Chatnuntawech, I., Yoon, J., et al.: Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM). NMR Biomed., e4271 (2020)

    Google Scholar 

  24. de Rochefort, L., Liu, T., Kressler, B., et al.: Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn. Reson. Med. 63(1), 194–206 (2010)

    Article  Google Scholar 

  25. Salomir, R., de Senneville, B.D., Moonen, C.T.: A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn. Reson. Part B Magn. Reson. Eng. 19(1), 26–34 (2003)

    Article  Google Scholar 

  26. Schweser, F., Zivadinov, R.: Quantitative susceptibility mapping (QSM) with an extended physical model for MRI frequency contrast in the brain: a proof-of-concept of quantitative susceptibility and residual (QUASAR) mapping. NMR Biomed. 31(12), e3999 (2018)

    Article  Google Scholar 

  27. Shmueli, K., de Zwart, J.A., van Gelderen, P., et al.: Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn. Reson. Med. 62(6), 1510–1522 (2009)

    Article  Google Scholar 

  28. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  29. Uecker, M., Lai, P., Murphy, M.J., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  30. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE CVPR, pp. 9446–9454 (2018)

    Google Scholar 

  31. Wang, Y., Liu, T.: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82–101 (2015)

    Article  Google Scholar 

  32. Wharton, S., Schäfer, A., Bowtell, R.: Susceptibility mapping in the human brain using threshold-based k-space division. Magn. Reson. Med. 63(5), 1292–1304 (2010)

    Article  Google Scholar 

  33. Wu, B., Li, W., Guidon, A., Liu, C.: Whole brain susceptibility mapping using compressed sensing. Magn. Reson. Med. 67(1), 137–147 (2012)

    Article  Google Scholar 

  34. Yoon, J., Gong, E., Chatnuntawech, I., et al.: Quantitative susceptibility mapping using deep neural network: QSMnet. NeuroImage 179, 199–206 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Professor Jongho Lee for sharing the multi-orientation QSM datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11312 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Koch, K.M. (2020). Model-Based Learning for Quantitative Susceptibility Mapping. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61598-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61597-0

  • Online ISBN: 978-3-030-61598-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics