Skip to main content

Neural Network-Based Reconstruction in Compressed Sensing MRI Without Fully-Sampled Training Data

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12450))

Abstract

Compressed Sensing MRI (CS-MRI) has shown promise in reconstructing under-sampled MR images, offering the potential to reduce scan times. Classical techniques minimize a regularized least-squares cost function using an expensive iterative optimization procedure. Recently, deep learning models have been developed that model the iterative nature of classical techniques by unrolling iterations in a neural network. While exhibiting superior performance, these methods require large quantities of ground-truth images and have shown to be non-robust to unseen data. In this paper, we explore a novel strategy to train an unrolled reconstruction network in an unsupervised fashion by adopting a loss function widely-used in classical optimization schemes. We demonstrate that this strategy achieves lower loss and is computationally cheap compared to classical optimization solvers while also exhibiting superior robustness compared to supervised models. Code is available at https://github.com/alanqrwang/HQSNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, we assume a single coil acquisition.

  2. 2.

    For forward models that do not permit an analytical solution of Eq. (7b) (e.g. multi-coil MRI), one can replace the data-consistency layer with an iterative optimization scheme (e.g. conjugate gradient as in  [1]). In addition, the iteration-specific weights \(\theta _k\) in Eq. (7a) can be replaced by a shared set of weights \(\theta \), which enforces the model to learn a global regularization prior for all iterations.

  3. 3.

    https://brain-development.org/ixi-dataset.

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019)

    Article  Google Scholar 

  2. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction - does AI come at a cost? (2019)

    Google Scholar 

  3. Bahadir, C.D., Wang, A.Q., Dalca, A.V., Sabuncu, M.R.: Deep-learning-based optimization of the under-sampling pattern in MRI. IEEE Trans. Comput. Imaging 6, 1139–1152 (2020)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML 2013, vol. 28. pp. I-115–I-123. JMLR.org

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chauffert, N., Ciuciu, P., Weiss, P.: Variable density compressed sensing in MRI. theoretical vs heuristic sampling strategies. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, April 2013

    Google Scholar 

  10. Cheng, K., Du, J., Zhou, H., Zhao, D., Qin, H.: Image super-resolution based on half quadratic splitting. Infrared Phys. Technol. 105, 103193 (2020)

    Article  Google Scholar 

  11. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  MATH  Google Scholar 

  12. Cremer, C., Li, X., Duvenaud, D.: Inference suboptimality in variational autoencoders (2018)

    Google Scholar 

  13. Dalca, A.V., Guttag, J., Sabuncu, M.R.: Anatomical priors in convolutional networks for unsupervised biomedical segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  14. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  15. Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., Lu, X.: Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 41(10), 2305–2318 (2018)

    Article  Google Scholar 

  16. Figueiredo, M.A.T., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)

    Article  MathSciNet  Google Scholar 

  17. Geethanath, S., et al.: Compressed sensing MRI: a review. Crit. Rev. Biomed. Eng. 41(3), 183–204 (2013)

    Article  Google Scholar 

  18. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Article  Google Scholar 

  19. Gershman, S.J., Goodman, N.D.: Amortized inference in probabilistic reasoning. In: CogSci (2014)

    Google Scholar 

  20. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2017)

    Article  Google Scholar 

  21. Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Process. 21(5), 2559–2571 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  23. Lee, D., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 15–18, April 2017

    Google Scholar 

  24. Liang, D., Cheng, J., Ke, Z., Ying, L.: Deep MRI reconstruction: unrolled optimization algorithms meet neural networks (2019)

    Google Scholar 

  25. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  26. Mardani, M., et al.: Neural proximal gradient descent for compressive imaging (2018)

    Google Scholar 

  27. Marino, J., Yue, Y., Mandt, S.: Iterative amortized inference (2018)

    Google Scholar 

  28. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27(3), 937–966 (2005)

    Article  MathSciNet  Google Scholar 

  29. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Article  Google Scholar 

  30. Ravishankar, S., Ye, J.C., Fessler, J.A.: Image reconstruction: from sparsity to data-adaptive methods and machine learning. Proc. IEEE 108(1), 86–109 (2020)

    Article  Google Scholar 

  31. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  32. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  33. Shu, R., Bui, H.H., Zhao, S., Kochenderfer, M.J., Ermon, S.: Amortized inference regularization (2018)

    Google Scholar 

  34. Tezcan, K.C., Baumgartner, C.F., Luechinger, R., Pruessmann, K.P., Konukoglu, E.: MR image reconstruction using deep density priors. IEEE Trans. Med. Imaging 38(7), 1633–1642 (2019)

    Article  Google Scholar 

  35. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517, April 2016

    Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Imaging Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-Net: a deep learning approach for compressive sensing MRI (2017)

    Google Scholar 

  38. Ye, N., Roosta-Khorasani, F., Cui, T.: Optimization methods for inverse problems. 2017 MATRIX Annals. MBS, vol. 2, pp. 121–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04161-8_9

    Chapter  Google Scholar 

  39. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI (2018)

    Google Scholar 

Download references

Acknowledgements

This research was funded by NIH grants R01LM012719, R01AG053949; and, NSF CAREER 1748377, and NSF NeuroNex Grant1707312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Q. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A.Q., Dalca, A.V., Sabuncu, M.R. (2020). Neural Network-Based Reconstruction in Compressed Sensing MRI Without Fully-Sampled Training Data. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61598-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61597-0

  • Online ISBN: 978-3-030-61598-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics