Advertisement

Everywhere Zero Pointwise Lyapunov Exponents for Sensitive Cellular Automata

Conference paper
  • 115 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12286)

Abstract

Lyapunov exponents are an important concept in differentiable dynamical systems and they measure stability or sensitivity in the system. Their analogues for cellular automata were proposed by Shereshevsky and since then they have been further developed and studied. In this paper we focus on a conjecture claiming that there does not exist such a sensitive cellular automaton, that would have both the right and the left pointwise Lyapunov exponents taking the value zero, for each configuration. In this paper we prove this conjecture false by constructing such a cellular automaton, using aperiodic, complete Turing machines as a building block.

Keywords

Cellular automata Sensitive Lyapunov exponents 

Notes

Acknowledgements

The author acknowledges the emmy.network foundation under the aegis of the Fondation de Luxembourg for its financial support.

References

  1. 1.
    Blondel, V.D., Cassaigne, J., Nichitiu, C.M.: On the presence of periodic configurations in Turing machines and in counter machines. Theor. Comput. Sci. 289, 573–590 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bressaud, X., Tisseur, P.: On a zero speed sensitive cellular automaton. Nonlinearity 20(1), 1–19 (2006).  https://doi.org/10.1088/0951-7715/20/1/002MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cassaigne, J., Ollinger, N., Torres, R.: A small minimal aperiodic reversible Turing machine. J. Comput. Syst. Sci. 84 (2014).  https://doi.org/10.1016/j.jcss.2016.10.004
  4. 4.
    D’amico, M., Manzini, G., Margara, L.: On computing the entropy of cellular automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 470–481. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055076CrossRefzbMATHGoogle Scholar
  5. 5.
    Finelli, M., Manzini, G., Margara, L.: Lyapunov exponents vs expansivity and sensitivity in cellular automata. In: Bandini, S., Mauri, G. (eds.) ACRI 1996, pp. 57–71. Springer, London (1997).  https://doi.org/10.1007/978-1-4471-0941-9_6CrossRefGoogle Scholar
  6. 6.
    Greiner, W.: Lyapunov exponents and chaos. In: Greiner, W. (ed.) Classical Mechanics, pp. 503–516. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-03434-3_26CrossRefGoogle Scholar
  7. 7.
    Guillon, P., Salo, V.: Distortion in one-head machines and cellular automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) Cellular Automata and Discrete Complex Systems, pp. 120–138. Springer International Publishing, Cham (2017).  https://doi.org/10.1007/978-3-319-58631-1_10CrossRefzbMATHGoogle Scholar
  8. 8.
    Jeandel, E.: Computability of the entropy of one-tape Turing machines. Leibniz International Proceedings in Informatics, LIPIcs 25 (2013).  https://doi.org/10.4230/LIPIcs.STACS.2014.421
  9. 9.
    Kůrka, P.: Topological dynamics of cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 9246–9268. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-30440-3_556CrossRefGoogle Scholar
  10. 10.
    Kůrka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci. 174(1), 203–216 (1997).  https://doi.org/10.1016/S0304-3975(96)00025-4. http://www.sciencedirect.com/science/article/pii/S0304397596000254MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lyapunov, A.: General Problem of the Stability of Motion. Control Theory and Applications Series. Taylor & Francis (1992). https://books.google.fi/books?id=4tmAvU3_SCoC
  12. 12.
    Shereshevsky, M.A.: Lyapunov exponents for one-dimensional cellular automata. J. Nonlinear Sci. 2(1), 1–8 (1992).  https://doi.org/10.1007/BF02429850MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tisseur, P.: Cellular automata and Lyapunov exponents. Nonlinearity 13(5), 1547–1560 (2000).  https://doi.org/10.1088/0951-7715/13/5/308MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wolfram, S.: Universality and complexity in cellular automata. Phys. D Nonlinear Phenom. 10(1), 1–35 (1984).  https://doi.org/10.1016/0167-2789(84)90245-8. http://www.sciencedirect.com/science/article/pii/0167278984902458MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wolfram, S.: Twenty problems in the theory of cellular automata. Phys. Scr. T9, 170–183 (1985).  https://doi.org/10.1088/0031-8949/1985/t9/029MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  1. 1.University of TurkuTurkuFinland

Personalised recommendations