Bader, B.W., et al.: Matlab tensor toolbox version 3.1 (2019). https://www.tensortoolbox.org
Bro, R., Kiers, H.A.L.: A new efficient method for determining the number of components in parafac models. J. Chemometr. 17(5), 274–286 (2003). https://doi.org/10.1002/cem.801
CrossRef
Google Scholar
Carić, T., Fosin, J.: Using congestion zones for solving the time dependent vehicle routing problem. Promet-Traffic Transp. 32(1), 25–38 (2020). https://doi.org/10.7307/ptt.v32i1.3296
CrossRef
Google Scholar
Chen, X., He, Z., Chen, Y., Lu, Y., Wang, J.: Missing traffic data imputation and pattern discovery with a Bayesian augmented tensor factorization model. Transp. Res. Part C: Emerg. Technol. 104(2018), 66–77 (2019). https://doi.org/10.1016/j.trc.2019.03.003
CrossRef
Google Scholar
Chow, A.H., Santacreu, A., Tsapakis, I., Tanasaranond, G., Cheng, T.: Empirical assessment of urban traffic congestion. J. Adv. Transp. 48(8), 1000–1016 (2014). https://doi.org/10.1002/atr.1241
CrossRef
Google Scholar
Djenouri, Y., Belhadi, A., Lin, J.C., Djenouri, D., Cano, A.: A survey on urban traffic anomalies detection algorithms. IEEE Access 7, 12192–12205 (2019). https://doi.org/10.1109/ACCESS.2019.2893124
CrossRef
Google Scholar
Erdelić, T., Ravlić, M., Carić, T.: Travel time prediction using speed profiles for road network of Croatia. In: 2016 International Symposium ELMAR, pp. 97–100 (2016). https://doi.org/10.1109/ELMAR.2016.7731763
Fanaee Tork, H., Gama, J.: Event detection from traffic tensors: a hybrid model. Neurocomputing 203, 22–33 (2016). https://doi.org/10.1016/j.neucom.2016.04.006
CrossRef
Google Scholar
HCM2010: Highway capacity manual, transportation Research Board, National Research Council (2010)
Google Scholar
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X
MathSciNet
CrossRef
MATH
Google Scholar
Liu, X., Liu, X., Wang, Y., Pu, J., Zhang, X.: Detecting anomaly in traffic flow from road similarity analysis. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM 2016. LNCS, vol. 9659, pp. 92–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39958-4_8
CrossRef
Google Scholar
Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors (Switz.) 17(4), 1–16 (2017). https://doi.org/10.3390/s17040818
CrossRef
Google Scholar
Nguyen, H., Liu, W., Chen, F.: Discovering congestion propagation patterns in spatio-temporal traffic data. IEEE Trans. Big Data 3(2), 169–180 (2017)
CrossRef
Google Scholar
Pan, P., Wang, H., Li, L., Wang, Y., Jin, Y.: Peak-hour subway passenger flow forecasting: a tensor based approach. In: 21st International Conference on Intelligent Transportation Systems, pp. 3730–3735 (2018). https://doi.org/10.1109/ITSC.2018.8569577
Papalexakis, E.E.: Automatic unsupervised tensor mining with quality assessment. In: Proceedings of the International Conference on Data Mining, pp. 711–719 (2016). https://doi.org/10.1137/1.9781611974348.80
Qi, G., Huang, A., Guan, W., Fan, L.: Analysis and prediction of regional mobility patterns of bus travellers using smart card data and points of interest data. IEEE Trans. Intell. Transp. Syst. 20(4), 1197–1214 (2019)
CrossRef
Google Scholar
Qi, N., Shi, Y., Sun, X., Wang, J., Yin, B., Gao, J.: Multi-dimensional sparse models. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 163–178 (2018)
CrossRef
Google Scholar
Shi, Y., Deng, M., Yang, X., Gong, J.: Detecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods. Comput. Environ. Urban Syst. 67, 80–96 (2018). https://doi.org/10.1016/j.compenvurbsys.2017.08.010
CrossRef
Google Scholar
Tan, H., Wu, Y., Shen, B., Jin, P.J., Ran, B.: Short-term traffic prediction based on dynamic tensor completion. IEEE Trans. Intell. Transp. Syst. 17(8), 2123–2133 (2016). https://doi.org/10.1109/TITS.2015.2513411
CrossRef
Google Scholar
Tan, H., Yang, Z., Feng, G., Wang, W., Ran, B.: Correlation analysis for tensor-based traffic data imputation method. Procedia - Soc. Behav. Sci. 96, 2611–2620 (2013). https://doi.org/10.1016/j.sbspro.2013.08.292
CrossRef
Google Scholar
Tang, K., Chen, S., Liu, Z.: Citywide spatial-temporal travel time estimation using big and sparse trajectories. IEEE Trans. Intell. Transp. Syst. 19(12), 4023–4034 (2018). https://doi.org/10.1109/TITS.2018.2803085
CrossRef
Google Scholar
Walt, S., Colbert, C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)
CrossRef
Google Scholar
Wang, J., Gao, F., Cui, P., Li, C., Xiong, Z.: Discovering urban spatio-temporal structure from time-evolving traffic networks. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) Web Technologies and Applications, pp. 93–104. Springer International Publishing, Cham (2014)
CrossRef
Google Scholar
Wang, X., Fagette, A., Sartelet, P., Sun, L.: A probabilistic tensor factorization approach to detect anomalies in spatiotemporal traffic activities. In: IEEE Intelligent Transportation Systems Conference, pp. 1658–1663 (2019). https://doi.org/10.1109/ITSC.2019.8917169
Wang, Z., Hu, K., Xu, K., Yin, B., Dong, X.: Structural analysis of network traffic matrix via relaxed principal component pursuit. Comput. Networks 56(7), 2049–2067 (2012)
CrossRef
Google Scholar
Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1888–1902 (2018). https://doi.org/10.1109/TPAMI.2017.2734888
CrossRef
Google Scholar
Yu, L., Huang, J., Zhou, G., Liu, C., Zhang, Z.: Tiirec: a tensor approach for tag-driven item recommendation with sparse user generated content. Inf. Sci. 411, 122–135 (2017). https://doi.org/10.1016/j.ins.2017.05.025
MathSciNet
CrossRef
Google Scholar
Żochowska, R., Karoń, G.: ITS Services Packages as a Tool for Managing Traffic Congestion in Cities, pp. 81–103. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-19150-8_3