Barracchia, E.P., Pio, G., D’Elia, D., Ceci, M.: Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering. BMC Bioinf. 21(1), 1–24 (2020)
CrossRef
Google Scholar
Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996)
MATH
Google Scholar
Ceci, M., Appice, A.: Spatial associative classification: propositional vs structural approach. J. Intell. Inf. Syst. 27(3), 191–213 (2006)
CrossRef
Google Scholar
Chen, Y., Li, Y., Narayan, R., et al.: Gene expression inference with deep learning. Bioinformatics 32(12), 1832–1839 (2016)
CrossRef
Google Scholar
Cherkasov, A., Muratov, E.N., Fourches, D., et al.: QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57(12), 4977–5010 (2014)
CrossRef
Google Scholar
Clare, A., King, R.D.: Machine learning of functional class from phenotype data. Bioinformatics 18(1), 160–166 (2002)
CrossRef
Google Scholar
Dash, T., Srinivasan, A., Vig, L., Orhobor, O.I., King, R.D.: Large-scale assessment of deep relational machines. In: Riguzzi, F., Bellodi, E., Zese, R. (eds.) ILP 2018. LNCS (LNAI), vol. 11105, pp. 22–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99960-9_2
CrossRef
Google Scholar
Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min. Knowl. Disc. 3(1), 7–36 (1999)
CrossRef
Google Scholar
Fröhler, S., Kramer, S.: Inductive logic programming for gene regulation prediction. Mach. Learn. 70(2–3), 225–240 (2008)
CrossRef
Google Scholar
Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd international conference on World Wide Web, pp. 413–422 (2013)
Google Scholar
Gaulton, A., Bellis, L.J., Bento, A.P., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(D1), D1100–D1107 (2011)
CrossRef
Google Scholar
Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004)
Google Scholar
Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)
Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
MATH
CrossRef
Google Scholar
Jeon, W., Kim, D.: FP2VEC: a new molecular featurizer for learning molecular properties. Bioinformatics 35(23), 4979–4985 (2019)
CrossRef
Google Scholar
King, R.D.: Applying inductive logic programming to predicting gene function. AI Mag. 25(1), 57–57 (2004)
MathSciNet
Google Scholar
King, R.D., Srinivasan, A., Dehaspe, L.: Warmr: a data mining tool for chemical data. J. Comput. Aided Mol. Des. 15(2), 173–181 (2001)
CrossRef
Google Scholar
Koleti, A., Terryn, R., et al.: Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res. 46(D1), D558–D566 (2017)
CrossRef
Google Scholar
Landrum, G.: RDKit: open-source cheminformatics (2006)
Google Scholar
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
CrossRef
Google Scholar
Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (2012)
Google Scholar
Marinka Zitnik, Rok Sosič, S.M., Leskovec, J.: BioSNAP datasets: stanford biomedical network dataset collection, August 2018. http://snap.stanford.edu/biodata
Menden, M.P., et al.: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 8(4), e61318 (2013)
CrossRef
Google Scholar
Muggleton, S., et al.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2011). https://doi.org/10.1007/s10994-011-5259-2
MathSciNet
MATH
CrossRef
Google Scholar
Olier, I., et al.: Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Mach. Learn. 107(1), 285–311 (2017). https://doi.org/10.1007/s10994-017-5685-x
MathSciNet
MATH
CrossRef
Google Scholar
Orhobor, O.I.: A general framework for building accurate and understandable genomic models: a study in rice (Oryza sativa). Ph.D. thesis, The University of Manchester (United Kingdom) (2019)
Google Scholar
Park, Y., Marcotte, E.M.: Flaws in evaluation schemes for pair-input computational predictions. Nat. Methods 9(12), 1134 (2012)
CrossRef
Google Scholar
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2016)
MATH
Google Scholar
Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7(Jul), 1531–1565 (2006)
MathSciNet
MATH
Google Scholar
Srinivasan, A.: The aleph manual (2001)
Google Scholar
Srinivasan, A., Page, D., Camacho, R., King, R.: Quantitative pharmacophore models with inductive logic programming. Mach. Learn. 64(1–3), 65 (2006)
MATH
CrossRef
Google Scholar
Takeda, T., Hao, M., Cheng, T., et al.: Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J. Cheminform. 9(1), 16 (2017)
CrossRef
Google Scholar
Tatonetti, N.P., Patrick, P.Y., Daneshjou, R., et al.: Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4(125), 25ra31–125ra31 (2012)
CrossRef
Google Scholar
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)
MathSciNet
MATH
Google Scholar
Verma, J., Khedkar, V.M., Coutinho, E.C.: 3D-QSAR in drug design-a review. Curr. Top. Med. Chem. 10(1), 95–115 (2010)
CrossRef
Google Scholar
Wishart, D.S., Knox, C., Guo, A.C., et al.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006)
CrossRef
Google Scholar
Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)
CrossRef
Google Scholar