Skip to main content

Swarm and Collective Capabilities for Multipotent Robot Ensembles

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles (ISoLA 2020)

Abstract

Swarm behavior can be very beneficial for real-world robot applications. While analyzing the current state of research, we identified that many studied swarm algorithms foremost aim at modifying the movement vector of the executing robot. In this paper, we demonstrate how we encapsulate this behavior in a general pattern that robots can execute with adjusted parameters for realizing different beneficial swarm algorithms. We integrate the pattern as a virtual swarm capability in our reference architecture for multipotent, reconfigurable multi-robot ensembles and demonstrate its application in proof of concepts. We further illustrate how we can lift the concept of virtual capabilities to also integrate other known approaches for collective system programming as virtual collective capabilities. As an example, we do so by integrating the execution platform for the Protelis aggregate programming language.

Partially funded by DFG (German Research Foundation), grant number 402956354.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/isse-augsburg/isola2020-swarm-capabilities.git.

  2. 2.

    NetLogo download on https://ccl.northwestern.edu/netlogo/download.shtml.

References

  1. Braubach, L., Pokahr, A.: Developing distributed systems with active components and jadex. Scalable Comput. Pract. Experience 13(2), 100–120 (2012)

    Google Scholar 

  2. Celikkanat, H., Turgut, A.E., Sahin, E.: Guiding a robot flock via informed robots. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds.) Distributed Autonomous Robotic Systems, pp. 215–225. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00644-9_19

  3. Dedousis, D., Kalogeraki, V.: A framework for programming a swarm of UAVs. In: Proceedings of the 11th Pervasive Technologies Related to Assistive Environment Conference, pp. 5–12 (2018)

    Google Scholar 

  4. Dorigo, M., et al.: The SWARM-BOTS project. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 31–44. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_4

    Chapter  Google Scholar 

  5. Eymüller, C., Wanninger, C., Hoffmann, A., Reif, W.: Semantic plug and play - self-descriptive modular hardware for robotic applications. Int. J. Semant. Comput. (IJSC) 12(04), 559–577 (2018)

    Article  Google Scholar 

  6. Hanke, J., Kosak, O., Schiendorfer, A., Reif, W.: Self-organized resource allocation for reconfigurable robot ensembles. In: 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 110–119 (2018)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  8. Kosak, O.: Facilitating planning by using self-organization. In: 2017 IEEE 2nd International Workshops on Foundations and Applictions of Self* Systems (FAS*W), pp. 371–374 (2017)

    Google Scholar 

  9. Kosak, O.: Multipotent systems: a new paradigm for multi-robot applications. In: Organic Computing: Doctoral Dissertation Colloquium, vol. 10, p. 53. kassel University Press GmbH (2018)

    Google Scholar 

  10. Kosak, O., Bohn, F., Keller, F., Ponsar, H., Reif, W.: Ensemble programming for multipotent systems. In: 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W), pp. 104–109 (2019)

    Google Scholar 

  11. Kosak, O., Huhn, L., Bohn, F., et al.: Maple-swarm: programming collective behavior for ensembles by extending HTN-planning. In: 9th International Symposium on Leveraging Application of Formal Methods, Verification and Validation (2020)

    Google Scholar 

  12. Kosak, O., Wanninger, C., Angerer, A., et al.: Decentralized coordination of heterogeneous ensembles using jadex. In: IEEE 1st International Workshops on Foundations and Application of Self* Systems (FAS*W), pp. 271–272 (2016)

    Google Scholar 

  13. Kosak, O., Wanninger, C., Angerer, A., et al.: Towards self-organizing swarms of reconfigurable self-aware robots. In: IEEE International Workshops on Foundations and Applications of Self* Systems, pp. 204–209. IEEE (2016)

    Google Scholar 

  14. Kosak, O., Wanninger, C., Hoffmann, A., Ponsar, H., Reif, W.: Multipotent systems: combining planning, self-organization, and reconfiguration in modular robot ensembles. Sensors 19(1), 17 (2018)

    Article  Google Scholar 

  15. Li, X., Ercan, M.F., Fung, Y.F.: A triangular formation strategy for collective behaviors of robot swarm. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5592, pp. 897–911. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02454-2_70

    Chapter  Google Scholar 

  16. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mobile sensor networks. IEEE Trans. Comput. 56(7), 847–946 (2007)

    Article  MathSciNet  Google Scholar 

  17. Mondada, F., Gambardella, L.M., Floreano, D., et al.: The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Rob. Autom. Mag. 12(2), 21–28 (2005)

    Article  Google Scholar 

  18. Nishimura, Y., Lee, G., Chong, N.: Adaptive lattice deployment of robot swarms based on local triangular interactions. In: 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 279–284 (2012)

    Google Scholar 

  19. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 1846–1853. ACM (2015)

    Google Scholar 

  20. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3794–3800 (2016)

    Google Scholar 

  21. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  22. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  23. Sánchez-García, J., Reina, D., Toral, S.: A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Fut. Gener. Comput. Syst. 90, 129–148 (2019)

    Article  Google Scholar 

  24. Vásárhelyi, G., Virágh, C., Somorjai, G., et al.: Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3866–3873 (2014)

    Google Scholar 

  25. Wanninger, C., Eymüller, C., Hoffmann, A., Kosak, O., Reif, W.: Synthesizing capabilities for collective adaptive systems from self-descriptive hardware devices bridging the reality gap. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 94–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_7

    Chapter  Google Scholar 

  26. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

  27. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Prob. Eng. 2015 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kosak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosak, O. et al. (2020). Swarm and Collective Capabilities for Multipotent Robot Ensembles. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles. ISoLA 2020. Lecture Notes in Computer Science(), vol 12477. Springer, Cham. https://doi.org/10.1007/978-3-030-61470-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61470-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61469-0

  • Online ISBN: 978-3-030-61470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics