Skip to main content

Management of Diseases Caused by Pectobacterium and Dickeya Species

  • Chapter
  • First Online:
Plant Diseases Caused by Dickeya and Pectobacterium Species

Abstract

Management of soft rot Pectobacteriaceae (SRP) is a challenge as there are no control agents available and no effective resistance present in commercial cultivars. In addition, many species of SRP have a broad host range and spread via rotten plant material takes place readily. In this chapter, the possibilities for disease management are outlined. Management is mainly based on seed certification to limit the risks of using infected planting material, and on hygiene and cultivation practices that reduce cross-contamination within and between seed lots. Balanced nutrition also supports the suppressiveness of crops against SRP. Experimental data show that inoculum in seed tubers can be reduced by thermotherapy and the use of biocides. Under controlled conditions, application of seed potatoes with biocontrol agents has showed promising results but few data are present on the efficacy of biocontrol in the field. Resistance in wild Solanum species against SRP has been found but to date no genes have been transferred to cultivars. However, new breeding technologies, such as CRISPR/CAS 9 and the use of true potato seed (TPS), will give us new perspectives on the generation of resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriaenssens EM, Van Vaerenbergh J, Vandenheuvel D, Dunon V, Ceyssens P-J, De Proft M, Kropinski AM, Noben J-P, Maes M, Lavigne R (2012) T4-Related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS ONE 7(3):e33227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afek U, Orenstein J (2002) Disinfecting potato tubers using steam treatments. Can J Plant Path 24(1):36–39

    Article  Google Scholar 

  • Alic S, Naglic T, Llop P, Toplak N, Koren S, Ravnikar M, Dreo T (2015) Draft genome ssquences of Dickeya sp. Isolates B16 (NIB Z 2098) and S1 (NIB Z 2099) causing soft rot of Phalaenopsis orchids. Genome Announc 3(5)

    Google Scholar 

  • Allefs JJHM, Van Dooijeweert W, De Jong ER, Prummel W, Hoogendoorn J (1995) Factors affecting potato soft-rot resistance to pectolytic Erwinia species in a tuber-slice assay. J Phytopathol 143(11–12):705–711

    Article  Google Scholar 

  • Allefs JJHM, Van Dooijeweert W, Prummel W, Keizer LCP, Hoogendoorn J (1996) Components of partial resistance to potato blackleg caused by pectolytic Erwinia carotovora subsp. atroseptica and E. chrysanthemi. Plant Pathol 45(3):486–496

    Google Scholar 

  • Altman A, Loberant B (1997) Micropropagation: clonal plant propagation in vitro. Agricultural biotechnology. CRC Press, Jerusalem, Israel, pp 19–42

    Chapter  Google Scholar 

  • Ansermet M, Schaerer S, Kellenberger I, Tallant M, Dupuis B (2016) Influence of seed-borne and soil-carried inocula of Dickeya spp. on potato plant transpiration and symptom expression. Eur J Plant Pathol 145(2):459–467

    Google Scholar 

  • Arce P, Moreno M, Gutierrez M, Gebauer M, Dell’Orto P, Torres H, Acuña I, Oliger P, Venegas A, Jordana X (1999) Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76(3):169–177

    Google Scholar 

  • Avinash VS, Panigrahi P, Suresh CG, Pundle AV, Ramasamy S (2013) Structural modelling of substrate binding and inhibition in penicillin V acylase from Pectobacterium atrosepticum. Biochem Biophys Res Commun 437(4):538-543

    Google Scholar 

  • Baghaee Ravari S, Moslemkhani K, Khodaygan P (2013) Assessment of genetic variability of prevalent pectinolytic bacteria causing potato tuber soft rot in eastern Iran. J Plant Pathol 95(1):107–113

    Google Scholar 

  • Bains Piara S, Bisht Vikram S, Lynch Dermot R, Kawchuk Lawrence M, Helgeson John P (1999) Identification of stem soft rot (Erwinia carotovora subspecies atroseptica) resistance in potato. Am J Potato Res 76(3):137–141

    Article  Google Scholar 

  • Bain RA, Millard P, Perombelon MCM (1996) The resistance of potato plants to Erwinia carotovora subsp. atroseptica in relation to their calcium and magnesium content. Potato Res 39(1):185–193

    Google Scholar 

  • Bakker PA, Glandorf DC, Viebahn M, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81(1–4):617–624

    Article  CAS  PubMed  Google Scholar 

  • Bakker PA, Pieterse CM, Van Loon L (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97(2):239–243

    Article  PubMed  Google Scholar 

  • Balogh B, Jones JB, Iriarte F, Momol M (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Bangemann L-W, Sieling K, Kage H (2014) The effect of nitrogen and late blight on crop growth, solar radiation interception and yield of two potato cultivars. Field Crops Res 155:56–66

    Article  Google Scholar 

  • Barbey C, Crépin A, Bergeau D, Ouchiha A, Mijouin L, Taupin L, Orange N, Feuilloley M, Dufour A, Burini JF, Latour X (2013) In planta biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis involves silencing of pathogen communication by the rhodococcal gamma-lactone catabolic pathway. PLoS ONE 8(6)

    Google Scholar 

  • Barone A, Sebastiano A, Carputo D, della Rocca F, Frusciante L (2001) Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosum gene pool. Theor Appl Genet 102(6–7):900–907

    Google Scholar 

  • Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32(1):201–234

    Article  CAS  Google Scholar 

  • Barrell PJ, Conner AJ (2009) Expression of a chimeric magainin gene in potato confers improved resistance to the phytopathogen Erwinia carotovora. Open Plant Sci J 3:14–21

    Article  CAS  Google Scholar 

  • Bartz JA, Kelman A (1986) Reducing the potential for bacterial soft rot in potato tubers by chemical treatments and drying. Am Potato J 63(9):481–493

    Article  Google Scholar 

  • Baştaş KK, Hekimhan H, Maden S, Tör M (2009) First report of bacterial stalk and head rot disease caused by Pectobacterium atrosepticum on sunflower in Turkey. Plant Dis 93(12):1352–1352

    Article  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benschop M, Kamenetsky R, Le Nard M, Okubo H, De Hertogh A (2010) The global flower bulb industry: production, utilization, research. In: Janick J (ed) Horticultural reviews, vol 36. Wiley-Blackwell

    Google Scholar 

  • Bonde R (1950) Factors affecting potato blackleg and seed-piece decay. The Maine agricultural experiment station, Orno, Maine

    Google Scholar 

  • Bontemps-Gallo S, Madec E, Dondeyne J, Delrue B, Robbe-Masselot C, Vidal O, Prouvost AF, Boussemart G, Bohin JP, Lacroix JM (2013) Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii. Environ Microbiol 15(3):881–894

    Article  CAS  PubMed  Google Scholar 

  • Boomsma D, Kastelein P, Van der Zouwen PS, Krijger M, Förch M, Van der Wolf J, Czajkowski C, Wegierek A, Jafra S, Van den Bovenkamp G, De haan E, Nunes Leite L (2012) Het project “Deltaplan Erwinia Deel C - Pootaardappelen. Eindrapport van het onderzoek 209–2012. Nederlandse Aardappel Organisatie, Den Haag

    Google Scholar 

  • Bouvard E (1987) Implication d’Erwinia sp dans une pourriture molle de Cichorium intybus L. au forçage. Thèse Université Paris Sud

    Google Scholar 

  • Boydston RA, Seymour MD, Brown CR, Alva AK (2006) Freezing behavior of potato (Solanum tuberosum) tubers in soil. Am J Potato Res 83(4):305–315

    Google Scholar 

  • Burgess PJ, Blakeman JP, Perombelon MCM (1994) Contamination and subsequent multiplication of soft rot erwinias on healthy potato leaves and debris after haulm destruction. Plant Pathol 43(2):286–299

    Article  Google Scholar 

  • Burra DD, Mühlenbock P, Andreasson E (2015) Salicylic and jasmonic acid pathways are necessary for defence against Dickeya solani as revealed by a novel method for blackleg disease screening of in vitro grown potato. Plant Biol 17(5):1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Byther RS, Chastagner GA (1993) Diseases. In: De Hertogh A, Le Nard M (eds) The physiology of flower bulbs. Elsevier Science, Amsterdam, Netherlands, pp 71–100

    Google Scholar 

  • Carputo D, Terra A, Barone A, Esposito F, Fogliano V, Monti L, Frusciante L (2003) Glycoalkaloids and acclimation capacity of hybrids between Solanum tuberosum and the incongruent hardy species Solanum commersonii. Theor Appl Genet 107(7):1187–1194

    Google Scholar 

  • Cating RA, Palmateer AJ (2011) Bacterial soft rot of oncidium orchids caused by a Dickeya sp. (Pectobacterium chrysanthemi) in Florida. Plant Dis 95(1):74. https://doi.org/10.1094/PDIS-07-10-0523

  • Cating RA, Hong JC, Palmateer AJ, Stiles CM, Dickstein ER (2008) First report of bacterial soft rot on vanda orchids caused by Dickeya chrysanthemi (Erwinia chrysanthemi) in the United States. Plant Dis 92(6):977

    Article  CAS  PubMed  Google Scholar 

  • Cating RA, Palmateer AJ, McMillan RT, Dickstein ER (2009) First report of a bacterial soft rot on Tolumnia orchids caused by a Dickeya sp. in the United States. Plant Dis 93(12):1354

    Google Scholar 

  • Charkowski AO (2015) Biology and control of Pectobacterium in potato. Am J Potato Res 92(2):223–229

    Article  Google Scholar 

  • Charkowski AO (2018) The changing face of bacterial soft-rot diseases. Annu Rev Phytopathol 56:269–288

    Google Scholar 

  • Chastagner GA, Hanks GR, Daughtrey ML, Yedidia I, Miller TW, Pappu HR (2013) Sustainable production and integrated management: environmental Issues In: Kamenetsky R, Okubo H (eds) Ornamental geophytes: from basic science to sustainable production. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp 363–405

    Google Scholar 

  • Chung YS, Goeser NJ, Cai X, Jansky S (2013) The effect of long term storage on bacterial soft rot resistance in potato. Am J Potato Res 90(4):351–356

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Cooke LR, Schepers HTAM, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS, Evenhuis A, Kessel GJT, Wander JGN, Andersson B, Hansen JG, Hannukkala A, Naerstad R, Nielsen BJ (2011) Epidemiology and integrated control of potato late blight in Europe. Potato Res 54(2):183–222

    Article  Google Scholar 

  • Coons G, Kotila J (1925) The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357–370

    Google Scholar 

  • Czajkowski R, Jafra S (2009) Quenching of acyl homoserine lactones-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1–16

    Article  CAS  PubMed  Google Scholar 

  • Czajkowski R, Boer WJ, Velvis H, Wolf JM (2010) Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3. Phytopathology 100

    Google Scholar 

  • Czajkowski R, Krzyżanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011a) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3(1):59–68

    Google Scholar 

  • Czajkowski R, Perombelon MCM, van Veen JA, van der Wolf JM (2011b) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60(6):999–1013

    Article  Google Scholar 

  • Czajkowski R, de Boer WJ, van der Zouwen PS, Kastelein P, Jafra S, de Haan EG, van den Bovenkamp GW, van der Wolf JM (2012a) Virulence of ‘Dickeya solani’ and Dickeya dianthicola biovar-1 and -7 strains on potato (Solanum tuberosum). Plant Pathol 62:597–610

    Article  CAS  Google Scholar 

  • Czajkowski R, de Boer WJ, van Veen JA, van der Wolf JM (2012b) Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp (biovar 3) in potato (Solanum tuberosum). Plant Pathol 61(4):677–688

    Article  Google Scholar 

  • Czajkowski R, De Boer W, Van der Wolf J (2013) Chemical disinfectants can reduce potato blackleg caused by ‘Dickeya solani’. Eur J Plant Pathol 136(2):419–432

    Article  CAS  Google Scholar 

  • Czajkowski R, Ozymko Z, Lojkowska E (2014) Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathol 63(4):758–772

    Google Scholar 

  • Czajkowski R, van der Wolf J, Krolicka A, Ozymko Z, Narajczyk M, Kaczynska N, Lojkowska E (2015) Salicylic acid can reduce infection symptoms caused by Dickeya solani in tissue culture grown potato (Solanum tuberosum L.) plants. Eur J Plant Pathol 141(3):545–558

    Google Scholar 

  • Dahaghin L, Shams-Bakhsh M (2014) Identification and genetic diversity of pectolytic phytopathogenic bacteria of mono- and dicotyledonous ornamental plants in Iran. J Plant Pathol 96(2):271–279

    Google Scholar 

  • da Silva Felix KC, da Silva CL, de Oliveira WJ, de Lima Ramos Mariano R, de Souza EB (2017) Calcium-mediated reduction of soft rot disease in Chinese cabbage. Eur J Plant Pathol 147(1):73–84

    Google Scholar 

  • Davis JR, Garner JG, Callihan RH (1974) Effects of gypsum, sulfur, terraclor and terraclor super-x for potato scab control. Am Potato J 51(2):35–43

    Article  CAS  Google Scholar 

  • De Boer SH, Kelman A (1978) Influence of oxygen concentration and storage factors on susceptibility of potato tubers to bacterial soft rot (Erwinia carotovora). Potato Res 21(1):65–79

    Article  Google Scholar 

  • De Boer SH, Li X, Ward LJ (2012) Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada (Phytopathology). Phytopathology 102(10):937–947

    Google Scholar 

  • De Haan J, Garcia Diaz A (2002) Manual on prototyping methodology and multifunctional crop rotation. Vegineco, Project Report No. 2. Lelystad, The Netherlands

    Google Scholar 

  • De Hertogh A, van Scheepen J, Le Nard M, Okubo H, Kamenetsky R (2013) Globalization of the flower bulb industry. In: Kamenetsky R, Okubo H (eds) Ornamental geophytes: from basic science to sustainable production, vol 1. CRC Press, Boca Raton, FL, USA, p 578

    Google Scholar 

  • Des Essarts YR, Cigna J, Quêtu-Laurent A, Caron A, Munier E, Beury-Cirou A, Hélias V, Faure D (2016) Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Appl Environ Microbiol 82(1):268–278

    Article  CAS  Google Scholar 

  • Dodd A, Kudla J, Sanders D (2010) The language of calcium signaling, vol 61

    Google Scholar 

  • Dong Yi H, Xu Jin L, Li Xian Z, Zhang Lian H (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. In: Proceedings of the national academy of sciences of the United States of America, vol 97, no 7, pp 3526–3531, 28 March 2000

    Google Scholar 

  • Dong Yi H, Wang Lian H, Xu Jin L, Zhang Hai B, Zhang Xi F, Zhang Lian H (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817

    Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70(2):954–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois Gill E, Schaerer S, Dupuis B (2014) Factors impacting blackleg development caused by Dickeya spp. in the field. Eur J Plant Pathol 140(2):317–327

    Google Scholar 

  • Dzimitrowicz A, Motyka A, Jamroz P, Lojkowska E, Babinska W, Terefinko D, Pohl P, Sledz W (2018) Application of silver nanostructures synthesized by cold atmospheric pressure plasma for inactivation of bacterial phytopathogens from the genera Dickeya and Pectobacterium. Materials 11(3):331

    Article  PubMed Central  CAS  Google Scholar 

  • Eayre CG, Bartz JA, Concelmo DE (1995) Bacteriophages of Erwinia carotovora and Erwinia ananas isolated from freshwater lakes. Plant Dis 79(8):801–804

    Article  Google Scholar 

  • EFSA (2013a) Dickeya dianthicola pest risk assessment EFSA J 11(1):3072

    Google Scholar 

  • EFSA (2013b) Scientific Opinion on the risk of Dickeya dianthicola for the EU territory with identification and evaluation of risk reduction options. EFSA J 11(1):115

    Google Scholar 

  • Elmer WH, Datnoff LE (2014) Mineral nutrition and suppression of plant disease. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems. Academic Press, Oxford, pp 231–244

    Chapter  Google Scholar 

  • Elphinstone JG, Perombelon MCM (1986) Contamination of potatoes by Erwinia carotovora during grading. Plant Pathol Oxford 35(1):25–33

    Google Scholar 

  • Elphinstone JG, Toth I (2007) Erwinia chrysanthemi (Dickeya spp.) (2007) The facts British potato council publication, p 25. https://www.veksthusinfo.no/dokument/1372763830.pdf

  • Elphinstone JG, Cahill G, Davey T, Harper G, Humphris S, Saddler GS, Toth IK, Wale S (2018) Effect of storage conditions on bacterial loading of seed potato tubers. Review, AHDB potato, Kenilworth, UK

    Google Scholar 

  • Expert D, Enard C, Masclaux C (1996) The role of iron in plant host-pathogen interactions. Trends Microbiol 4(6):232–237

    Article  CAS  PubMed  Google Scholar 

  • Farrar JJ, Nunez JJ, Davis RM (2000) Influence of soil saturation and temperature on Erwinia chrysanthemi soft rot of carrot. Plant Dis 84(6):665–668

    Article  CAS  PubMed  Google Scholar 

  • Franc GD, Harrison MD, Powelson ML (1984) The presence of Erwinia carotovora in ocean water, rain water and aerosols. In: Paper presented at the international conference on potato blackleg disease, Edinburgh, 26–29 June 1984

    Google Scholar 

  • Fritz V, Honma S (1987) The effect of raised beds, population densities, and planting date on the incidence of bacterial soft rot in Chinese cabbage

    Google Scholar 

  • Fukuoka S, Howe J, Andrä J, Gutsmann T, Rössle M, Brandenburg K (2008) Physico-chemical and biophysical study of the interaction of hexa- and heptaacyl lipid A from Erwinia carotovora with magainin 2-derived antimicrobial peptides. Biochimica et Biophysica Acta (BBA)—Biomembranes 1778(10):2051–2057

    Google Scholar 

  • Funnell K, Mackay BR (1999) Directions and challenges of the New Zealand calla industry, and the use of calcium to control soft rot. In: Paper presented at the international symposium on development of bulbous flower industry, Taichung, Taiwan, January 1999

    Google Scholar 

  • Garge SS, Nerurkar AS (2017) Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatal Agric Biotechnol 9:48–57

    Article  Google Scholar 

  • Gerayeli N, Baghaee-Ravari S, Tarighi S (2018) Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. Eur J Plant Pathol 150(4):1049–1063

    Google Scholar 

  • Gill ED, Schaerer S, Dupuis B (2014) Factors impacting blackleg development caused by Dickeya spp. in the field. Eur J Plant Pathol 140(2):317–327

    Google Scholar 

  • González-Rodríguez MÁ, Silva-Rojas HV, Mascorro-Gallardo JO (2005) Ensayo in vitro del péptido antimicrobiano melitina contra diferentes bacterias fitopatógenas. Revista Mexicana De Fitopatología 23(2):176–182

    Google Scholar 

  • Goto K (1985) Relationships between soil pH, available calcium and prevalence of potato scab. Soil Sci Plant Nutr 31(3):411–418

    Google Scholar 

  • Graham DC, Harper PC (1966) Effect of inorganic fertilizers on the incidence of potato blackleg disease. Eur Potato J 9(3):141–145

    Article  CAS  Google Scholar 

  • Graham DC, Quinn CE, Bradley LF (1977) Quantitative studies on the generation of aerosols of Erwinia carotovora var. atroseptica by simulated raindrop impaction on blackleg infected potato stems. J Appl Bacteriol 43(3):413–424

    Google Scholar 

  • Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40(1):86–116

    Article  PubMed  CAS  Google Scholar 

  • Hadizadeh I, Peivastegan B, Hannukkala A, van der Wolf J, Nissinen R, Pirhonen M (2019) Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathol 68(2):297–311

    Article  CAS  Google Scholar 

  • Hameed A, Zaidi SS-EA, Shakir S, Mansoor S (2018) Applications of new breeding technologies for potato improvement. Front Plant Sci 9:925–925

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris R (1979) Chemical control of bacterial soft-rot of wounded potato tubers. Potato Res 22(3):245–249

    Article  CAS  Google Scholar 

  • Haverkort A, Struik P (2015) Yield levels of potato crops: recent achievements and future prospects. Field Crops Res 182:76–85

    Article  Google Scholar 

  • Hellmers E (1958) Four wilt diseases of perpetual flowering carnations in Denmark. Dansk Botanisk Arkiv 18:95–140

    Google Scholar 

  • Hinsley A, De Boer HJ, Fay FM, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masrers S, Metusala D, Roberts DL, Veldman S, Wong S, Phelps J (2018) A review of the trade in orchids and its implications for conservation. Bot J Linnean Soc 186:435–455

    Google Scholar 

  • Huber DM, Thompson IA (2007) Nitrogen and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. American Phytopathological Society, St. Paul, MN, pp 31–44

    Google Scholar 

  • Huber D, Römheld V, Weinmann M (2012) Chapter 10—Relationship between nutrition, plant diseases and pests. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, San Diego, pp 283–298

    Chapter  Google Scholar 

  • Jafra S, Przysowa J, Gwizdek-Wisniewska A, van der Wolf JM (2009) Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae. J Appl Microbiol 106(1):268–277

    Article  CAS  PubMed  Google Scholar 

  • Jansky S (2000) Breeding for disease resistance in potato, vol 19. Plant Breeding Reviews. Wiley, Hoboken, USA

    Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15(7):817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DA, Dung JK, Cummings TF, Schroeder BK (2011) Development and suppression of aerial stem rot in commercial potato fields. Plant Dis 95(3):285–291

    Article  PubMed  Google Scholar 

  • Jung Y-J, Choi C-S, Park J-H, Kang H-W, Choi J-E, Nou I-S, Lee SY, Kang K-K (2008) Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electron J Biotechnol 11(1):71–79

    Article  CAS  Google Scholar 

  • Kastelein P, Evenhuis A, Van der Zouwen P, Krijger M, Van der Wolf J (2018) Spread of Xanthomonas fragariae in strawberry fields by machinery. EPPO Bull 48(3):569–577

    Article  Google Scholar 

  • Kastelein P, Förch MG, Krijger MC, Van der Zouwen PS, Van den Berg W, Van der Wolf JM (2020) Systemic colonization of potato plants resulting from potato haulm inoculation with Dickeya solani or Pectobacterium parmentieri. Can J Plant Pathol (in press)

    Google Scholar 

  • Kempenaar C, Struik PC (2007) The canon of potato science: 33 Haulm Killing. Potato Res 50(3–4):341–345

    Article  Google Scholar 

  • Kerlan C, Robert Y, Perennec P, Guiller E (1987) Mise au point sur l’incidence du virus Y o et méthodes de lutte mises en oeuvre en France pour la production de semences de pommes de terre. Potato Res 30(4):651–667

    Article  Google Scholar 

  • Kloepper JW (1983) Effect of seed piece inoculation with plant growth promoting rhizobacteria on populations of Erwinia carotovora on potato roots and in daughter tubers. Phytopathology 73(2):217–219

    Article  Google Scholar 

  • Knowles NR, Iritani WM, Weiler LD, Gross DC (1982) Susceptibility of potatoes to bacterial rot and weight loss as a function of wound-healing interval and temperature. Am Potato J 59(11):515–522

    Article  Google Scholar 

  • Krzyzanowska D, Obuchowski M, Bikowski M, Rychlowski M, Jafra S (2012a) Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors 12(12):17608–17619

    Google Scholar 

  • Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lojkowska E, Jafra S (2012b) Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol 94(2):367–378

    Google Scholar 

  • Krzyżanowska DM, Ossowicki A, Rajewska M, Maciąg T, Jabłońska M, Obuchowski M, Heeb S, Jafra S (2016) When genome-based approach meets the “old but good”: revealing genes involved in the antibacterial activity of Pseudomonas sp. P482 against soft rot pathogens. Front Microbiol 7:782

    Google Scholar 

  • Kushalappa AC, Zulfiquar M (2001) Effect of wet incubation time and temperature on infection, and of storage time and temperature on soft rot lesion expansion in potatoes inoculated with Erwinia carotovora ssp. carotovora. Potato Res 4(3):233–242

    Google Scholar 

  • Lambert HD (1991) Relationship of calcium to potato scab, vol 81

    Google Scholar 

  • Lambert DH, Powelson ML, Stevenson WR (2005) Nutritional interactions influencing diseases of potato. Am J Potato Res 82(4):309–319

    Article  CAS  Google Scholar 

  • Laurila J, Ahola V, Lehtinen A, Joutsjoki T, Hannukkala A, Rahkonen A (2008) Characterization of Dickeya strains isolated from potato and river water samples in Finland. Eur J Plant Pathol 122:213–225

    Google Scholar 

  • Laville J, Benigni M (1997) La tolérance variétale aux maladies, élément de lutte raisonnée contre les parasites de l’endive. XIVème Biennale internationale de l’endive, Arras, France, 28–31. FNPE Edition

    Google Scholar 

  • Lebecka R (2017) Screening for potato resistance to blackleg and soft rot. Plant Breed Seed Sci 75(1):97–104

    Article  Google Scholar 

  • Lebecka R, Zimnoch-Guzowska E, Kaczmarek Z (2005) Resistance to soft rot (Erwinia carotovora subsp. atroseptica) in tetraploid potato families obtained from 4x-2x crosses. Am J Potato Res 82(3):203–210

    Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171(2):249–269

    Article  CAS  PubMed  Google Scholar 

  • Le Guern J, Tirilly Y, Le Picard D, Le Ster D (1992) Bacterial rot of witloof chicory roots caused by Erwinia chrysanthemi. Plant Pathol 41:228–231

    Article  Google Scholar 

  • Le Hingrat Y, Hélias V, Le Roux-Nio A, Cellier G, Prior P, Rivoal C, Poliakof F, Soubelet H, Moreau M, Deveaux V, Latour X, Guaucher D, Benigni M, Martinon V (2012) Evaluation (et gestion) des risques sanitaires bactérien liés aux itenéraires culturaux de la pomme de terre et d’autres cultures spécialisées. Innov Agronomiques 25:253–267

    Google Scholar 

  • Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54(4):301–312

    Article  Google Scholar 

  • Lipsky A, Joshi JR, Carmi N, Yedidia I (2016) Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. J Biotechnol 238:22–29

    Google Scholar 

  • Li Z, Wang T, Luo X, Li X, Xia C, Zhao Y, Ye X, Huang Y, Gu X, Cao H, Cui Z, Fan J (2018) Biocontrol potential of Myxococcus sp. strain BS against bacterial soft rot of calla lily caused by Pectobacterium carotovorum. Biol Control 126:36–44

    Article  Google Scholar 

  • Lorenc-Kukuła K, Jafra S, Oszmiański J, Szopa J (2005) Ectopic expression of anthocyanin 5-O-glucosyltransferase in potato tuber causes increased resistance to bacteria. J Agric Food Chem 53(2):272–281

    Article  PubMed  CAS  Google Scholar 

  • Lumb VM, Perombelon MCM, Zutra D (1986) Studies of a wilt disease of the potato plant in israel caused by Erwinia chrysanthemi. Plant Pathol 35(2):196–202

    Article  Google Scholar 

  • Lutman PJ (1977) Investigations into some aspects of the biology of potatoes as weeds. Weed Res 17:123–132

    Article  Google Scholar 

  • Luzzatto T, Yishay M, Lipsky A, Ion A, Belausov E, Yedidia I (2007) Efficient, long-lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathol 56(4):692–701

    Article  CAS  Google Scholar 

  • Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97(9):1150–1163

    Article  PubMed  Google Scholar 

  • Mahmoudi E, Naderi D, Venturi V (2013) AiiA lactonase disrupts N-acylhomoserine lactone and attenuates quorum-sensing-related virulence in Pectobacterium carotovorum EMPCC. Ann Microbiol 63(2):691–697

    Google Scholar 

  • Mallmann W, Hemstreet C (1924) Isolation of an inhibitory substance from plants. Agric Res 28:599–602

    Google Scholar 

  • Maltas A, Dupuis B, Sinaj S (2018) Yield and quality response of two potato cultivars to nitrogen fertilization. Potato Res 61(2):97–114

    Article  CAS  Google Scholar 

  • Mantsebo CC, Mazarura U, Goss M, Ngadze E (2014) The epidemiology of Pectobacterium and Dickeya species and the role of calcium in postharvest soft rot infection of potato (Solanum tuberosum) caused by the pathogens: a review. Afr J Agric Res 9(19):1509–1515

    Article  Google Scholar 

  • Marquez-Villavicencio MdP, Groves RL, Charkowski AO (2011) Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Dis 95(3):232–241

    Article  PubMed  Google Scholar 

  • Matilla MA, Krell T (2018) Plant growth promotion and biocontrol mediated by plant-associated bacteria. In: Plant microbiome: stress response. Springer, pp 45–80

    Google Scholar 

  • McDougald D, Rice SA, Weichart D, Kjelleberg S (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol Ecol 25(1):1–9

    Article  CAS  Google Scholar 

  • McGovern RJ, Horst RK, Dickey RS (1985) Effect of plant nutrition on susceptibility of Chrysanthemum morifolium to Erwinia chrysanthemi. Plant Dis 69:1086–1088

    Google Scholar 

  • McGuire RG, Kelman A (1984) Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathology 74:1250–1256

    Article  CAS  Google Scholar 

  • McGuire RG, Kelman A (1986) Calcium in potato tuber cell walls in relation to tissue maceration by Erwinia carotovora pathovar atroseptica. Phytopathology 76(4):401–406

    Article  CAS  Google Scholar 

  • McMillan GP, Hedley D, Fyffe L, Perombelon MCM (1993) Potato resistance to soft-rot erwinias is related to cell wall pectin esterification. Physiol Mol Plant Pathol 42(4):279–289

    Article  CAS  Google Scholar 

  • Mhedbi-Hajri N, Malfatti P, Pédron J, Gaubert S, Reverchon S, Van Gijsegem F (2011) PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between Dickeya dadantii 3937 and plants. Environ Microbiol 13:2901–2914

    Article  CAS  PubMed  Google Scholar 

  • Mills A, Hurta R (2006) Sensitivity of Erwinia spp. to salt compounds in vitro and their effect on the development of soft rot in potato tubers in storage. Postharvest Biol Technol 41(2):208–214

    Google Scholar 

  • Mohan S, Meiyalaghan S, Latimer JM, Gatehouse ML, Monaghan KS, Vanga BR, Pitman AR, Jones EE, Conner AJ, Jacobs JME (2013) GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. Theor Appl Genet 1–13

    Google Scholar 

  • Moh AA, Massart S, Lahlali R, Jijakli M, Lepoivre P (2011) Predictive modelling of the combined effect of temperature and water activity on the in vitro growth of Erwinia spp. infecting potato tubers in Belgium. Biotechnologie, Agronomie, Société et Environnement 15(3):378–386

    Google Scholar 

  • Morales-Irigoyen EE, de las Mercedes Gómez-y Y, Flores-Moreno JL, Franco-Hernández MO (2018) A bionanohybrid ZnAl-NADS ecological pesticide as a treatment for soft rot disease in potato (Solanum tuberosum L.). Environ Sci Pollut Res 25(22):21430–21439

    Google Scholar 

  • Nasser W, Bouillant Marie L, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expl-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29(6):1391–1405

    Article  CAS  PubMed  Google Scholar 

  • Nasser W, Dorel C, Wawrzyniak J, Van Gijsegem F, Groleau M-C, Déziel E, Reverchon S (2013) Vfm a new quorum sensing system controls the virulence of Dickeya dadantii. Environ Microbiol 15(3):865–880

    Article  CAS  PubMed  Google Scholar 

  • Ngadze E (2018a) Calcium soil amendment increases resistance of potato to blackleg and soft rot pathogens. Afr J Food Agric Nutr Dev 18:12975–12991

    CAS  Google Scholar 

  • Ngadze E (2018b) Calcium soil amendment increases resistance of potato to blackleg and soft rot pathogens. Afr J Food, Agric, Nutr Dev 18(1)

    Google Scholar 

  • Ngadze E, Icishahayo D, Coutinho TA, van der Waals JE (2011) Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96(2):186–192

    Article  CAS  Google Scholar 

  • Ngadze E, Coutinho TA, Icishahayo D, van der Waals JE (2014) Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Prot 62:40–45

    Article  CAS  Google Scholar 

  • Olsen N, Thornton M, Nolte P (2012) Harvest Temperature Consequences. University of Idaho. https://idahopotato.com/uploads/media/harvest-temperature-consequences.pdf

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69(1):29

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Ossowicki A, Jafra S, Garbeva P (2017) The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS ONE 12(3):e0174362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SK (1969) Studies in the relationship between Ca nutrient and soft rot disease in Chinese cabbage, vol 12. Research Reports of Office of Rural Development 12(2):63–70

    Google Scholar 

  • Park YH, Choi C, Park EM, Kim HS, Park HJ, Bae SC, Ahn I, Kim MG, Park SR, Hwang D-J (2012) Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. Plant Cell Rep 31(10):1845–1850

    Article  CAS  PubMed  Google Scholar 

  • Pasco C, Bozec M, Ellissèche D, Andrivon D (2006) Resistance behaviour of potato cultivars and advanced breeding clones to tuber soft rot caused by Pectobacterium atrosepticum. Potato Res 49(2):91–98

    Article  Google Scholar 

  • Pavek JJ, Corsini DL (2001) Utilization of potato genetic resources in variety development. Am J Potato Res 78(6):433

    Article  Google Scholar 

  • Pérombelon MCM (1992) Potato blackleg: epidemiology, host-pathogen interaction and control. Tijdschrift Over Plantenziekten 98(2):135–146

    Google Scholar 

  • Pérombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51(1):1–12

    Google Scholar 

  • Pérombelon MCM, Hyman LJ (1989) Survival of soft rot coliforms, Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica in soil in Scotland. J Appl Bacteriol 66(2):95–106

    Google Scholar 

  • Pérombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18(1):361–387

    Article  Google Scholar 

  • Pérombelon MCM, Salmond GPC (1995) Bacterial soft rot. In: Singh US, Singh RP, Kohmoto K (eds) Pathogenesis and host specificity in plant diseases. Pergamon Press. pp 1–20

    Google Scholar 

  • Pérombelon MCM, Fox RA, Lowe R (1979) Dispersion of Erwinia carotovora in aerosols produced by the pulverization of potato haulm prior to harvest. J Phytopathol 94(3):249–260

    Article  Google Scholar 

  • Pérombelon M, Burnett E, Melvin J, Black S (1989) Preliminary studies on the control of potato blackleg by a hot water treatment of seed tubers. In: Vascular wilt diseases of plants. Springer, pp 557–566

    Google Scholar 

  • Platero M, Tejerina G (1976) Calcium nutrition in Phaseolus vulgaris in relation to its resistance to Erwinia carotovora. J Phytopathol 85(4):314–319

    Article  Google Scholar 

  • Potato_Council (2009) Safe Haven certification scheme. https://potatoes.ahdb.org.uk/sites/default/files/publication_upload/safe_haven_09.pdf

  • Pringle RT, Robinson K (1996) Storage of seed potatoes in pallet boxes. 1. The role of tuber surface moisture on the population of Erwinia bacteria. Potato Res 39(2):205–222

    Google Scholar 

  • Rahman M, Ali ME, Khan A, Hashim U, Akanda A, Hakim M (2012) Characterization and identification of soft rot bacterial pathogens in Bangladeshi potatoes. Afr J Microbiol Res 6(7):1437–1445

    Article  Google Scholar 

  • Rakotonindraina T, Corbière R, Chatot C, Pinchon V, Dubois L, Aurousseau F, Chauvin JE, Aubertot JN (2011) Analysis of volunteer density under the influence of cropping practices: a contribution to the modelling of primary inoculum of Phytophthora infestans in potato crops. In: Thirteenth EuroBlight workshop, St. Petersburg, 2011. PPO-Special Report, vol 15. PPO-Special Report, pp 67–74

    Google Scholar 

  • Ranganna B, Kushalappa AC, Raghavan GSV (1997) Ultraviolet irradiance to control dry rot and soft rot of potato in storage. Can J Plant Path 19(1):30–35

    Article  Google Scholar 

  • Ren J, Petzoldt R, Dickson MH (2001) Genetics and population improvement of resistance to bacterial soft rot in Chinese cabbage. Euphytica 117(3):197–207

    Article  Google Scholar 

  • Rietman H, Finkers R, Evers L, van der Zouwen PS, van der Wolf JM, Visser RGF (2014) A stringent and broad screen of Solanum spp. tolerance against Erwinia bacteria using a petiole test. Am J Potato Res 91(2):204–214

    Google Scholar 

  • Rivero M, Furman N, Mencacci N, Picca P, Toum L, Lentz E, Bravo-Almonacid F, Mentaberry A (2012) Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J Biotechnol 157(2):334–343

    Article  CAS  PubMed  Google Scholar 

  • Rojas F, Corzo L, Sánchez P, Brito D, Montes dO, Martínez Y, Pino P (2014) Antibacterial activity of essential oils against Pectobacterium carotovorum subsp. carotovorum. Revista de Protección Vegetal 29(3):197–203

    Google Scholar 

  • Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427

    Google Scholar 

  • Schöber BM, Vermeulen T (1999) Enzymatic maceration of witloof chicory by the softrot bacteria Erwinia carotovora subsp carotovora : the effect of nitrogen and calcium treatment of the plant on pectic enzyme production and disease development. Eur J Plant Pathol 105:341–349

    Article  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7(8):750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simić M, Spasojević I, Kovacević D, Brankov M, Dragicević V (2016) Crop rotation influence on annual and perennial weed control and maize productivity. Rom Agric Res 33:125–132

    Google Scholar 

  • Sjahril R, Chin DP, Khan RS, Yamamura S, Nakamura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotechnol 23(2):191–194

    Google Scholar 

  • Sławiak M, van Beckhoven JR, Speksnijder AG, Czajkowski R, Grabe G, van der Wolf JM (2009) Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol 125(2):245–261

    Google Scholar 

  • Smid EJ, Jansen AHJ, Tuijn CJ (1993) Anaerobic Nitrate respiration by Erwinia carotovora subsp. atroseptica during potato tuber invasion. Appl Environ Microbiol 59(11):3648–3653

    Google Scholar 

  • Snijder Ronald C, van Tuyl Jaap M (2002) Evaluation of tests to determine resistance of Zantedeschia spp. (Araceae) to soft rot caused by Erwinia carotovora subsp. carotovora. Eur J Plant Pathol 108(6):565–571

    Google Scholar 

  • Spooner DM, Jansky SH, Simon R (2009) Tests of taxonomic and biogeographic predictivity: resistance to disease and insect pests in wild relatives of cultivated potato. Crop Sci 49(4):1367–1376

    Article  Google Scholar 

  • Stewart D, McDougall GJ, Ross HA, Hancock RD, Morris WL, Taylor MA, Roberts AG, Wright KM, Chapman SN, Tucker GA, James EK (2010) Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture. J Exp Bot 62(1):371–381

    PubMed  PubMed Central  Google Scholar 

  • Thangavel T, Steven Tegg R, Wilson CR (2014) Resistance to multiple tuber diseases expressed in somaclonal variants of the potato cultivar russet Burbank. The Sci World J 2014:8

    Google Scholar 

  • Toth IK, Newton JA, Hyman LJ, Lees AK, Daykin M, Ortori C, Williams P, Fray RG (2004) Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot Erwiniae. Mol Plant Microbe Interact 17(8):880–887

    Article  CAS  PubMed  Google Scholar 

  • Toth IK, Hyman LJ, Moleleki L, Ravensdale M, Robert C, Liu H, Humphris S, Hedley P, Gilroy E, Pritchard L, Birch PRJ (2006) What has genomics ever done for us?—a study of Erwinia and blackleg disease. In: Crop protection in Northern Britain, Dundee, Frebuary, 2006

    Google Scholar 

  • Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Helias V, Pirhonen M, Tsror L, Elphinstone JG (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60(3):385–399

    Article  Google Scholar 

  • Tsror L, Erlich O, Lebiush S, Hazanovsky M, Zig U, Slawiak M, Grabe G, van der Wolf JM, van de Haar JJ (2009) Assessment of recent outbreaks of Dickeya sp (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur J Plant Pathol 123(3):311–320

    Google Scholar 

  • Tsror L, Lebiush S, Erlich O, Ben-Daniel B, Van der Wolf J (2010) First report of latent infection of Cyperus rotundus caused by a biovar 3 Dickeya sp.(Syn. Erwinia chrysanthemi) in Israel. New Dis Rep 22(14):2044–0588

    Google Scholar 

  • Tsuda K, Tsuji G, Higashiyama M, Ogiyama H, Umemura K, Mitomi M, Kubo Y, Kosaka Y (2016) Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biol Control 100:63–69

    Article  Google Scholar 

  • Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, De Boer W, Garbeva P (2014) Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5:567

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzeng KC, McGuire RG, Kelman A (1990) Resistance of tubers from different potato cultivars to soft rot caused by Erwinia carotovora ssp atroseptica. Am Potato J 67(5):287–306

    Article  Google Scholar 

  • Van Doorn J, Vreeburg PJM, van Leeuwen PJ, Dees RHL (2011) The presence and survival of soft rot (Erwinia) in flower bulb production systems. Acta Hort 886:365–379

    Article  Google Scholar 

  • Vanjildorj E, Song SY, Yang ZH, Choi JE, Noh YS, Park S, Lim WJ, Cho KM, Yun HD, Lim YP (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28(10):1581–1591

    Google Scholar 

  • Vantomme R, Sarrazyn R, Goor M, Verdonck L, Kerstcrs K, De Ley J (1989) Bacterial rot of witloof chicory caused by strains of Erwinia and Pseudomonas: symptoms, isolation and characterisation. J Phytopathol 124:337–367

    Article  Google Scholar 

  • van Vuurde JWL, de Vries PM (1994) Population dynamics of Erwinia carotovora subsp. atroseptica on the surface of intact and wounded seed potatoes during storage. J Appl Bacteriol 76(6):568–575

    Google Scholar 

  • Wale S, Kiezebrink D, Anderson E, Dawson G, Toth I, Humphris S, McKenzie K (2013) Evaluating the impact of haulm destruction method on the development of disease in seed tuber production, vol R453. Potato Council, Kenilworth, UK

    Google Scholar 

  • Wastie RL, Mackay GR, Carbonell J (1994) Effect of Erwinia carotovora subsp. atroseptica on yield of potatoes from cut and uncut seed tubers in Valencia. Potato Res 37(1):21–24

    Google Scholar 

  • Wegener CB (2002) Induction of defence responses against Erwinia soft rot by an endogenous pectate lyase in potatoes. Physiol Mol Plant Pathol 60(2):91–100

    Article  CAS  Google Scholar 

  • Wegener C, Bartling S, Olsen O, Weber J, von Wettstein D (1996) Pectate lyase in transgenic potatoes confers pre-activation of defence against Erwinia carotovora. Physiol Mol Plant Pathol 49(6):359–376

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicks TJ, Hall BH, Morgan BA (2007) Tuber soft rot and concentrations of Erwinia spp. in potato washing plants in South Australia. Australas Plant Pathol 36(4):309–312

    Google Scholar 

  • Wright P, K. Burge G, (2000) Irrigation, sawdust mulch, and enhance biocide affects soft rot incidence, and flower and tuber production of calla. New Zealand J Crop Hortic Science 28:225–231

    Article  CAS  Google Scholar 

  • Zimnoch Guzowska E, Marczewski W, Lebecka R, Flis B, Schaefer Pregl R, Salamini F, Gebhardt C (2000) QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Sci 40(4):1156–1167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. van der Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Wolf, J.M. et al. (2021). Management of Diseases Caused by Pectobacterium and Dickeya Species. In: Van Gijsegem, F., van der Wolf, J.M., Toth, I.K. (eds) Plant Diseases Caused by Dickeya and Pectobacterium Species. Springer, Cham. https://doi.org/10.1007/978-3-030-61459-1_6

Download citation

Publish with us

Policies and ethics