Skip to main content

Project Scheduling Under Uncertainty

  • Chapter
  • First Online:
An Introduction to Project Modeling and Planning

Part of the book series: Springer Texts in Business and Economics ((STBE))

  • 1447 Accesses

Abstract

Modelling uncertainty in project management has been a topic of great interest to both researchers and practitioners, accumulating a rich literature in the last decades. This chapter covers several approaches for dealing with various aspects of uncertainty in the decision environment. We compare reactive, proactive, stochastic, and fuzzy scheduling methods. The concepts of robustness and sensitivity analysis are introduced, and their importance for project planning is discussed. Buffer management and critical chain project scheduling are described in the context of robust scheduling. Examples of scenario and simulation analyses are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aytug, H., Lawley, M. A., McKay, K. N., Mohan, S., & Uzsoy, R. (2005). Executing production schedules in the face of uncertainty: A review and some future directions. European Journal of Operational Research, 161, 86–110.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98, 49–71.

    Article  Google Scholar 

  • Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: A review of recent advances. European Journal of Operational Research, 248, 869–887.

    Article  Google Scholar 

  • Coco, A. A., Solano-Charris, E. L., Santos, A. C., Prins, C., & de Noronha, T. F. (2014). Robust optimization criteria: State-of-the-art and new issues. Technical report UTT-LOSI-14001, ISSN: 2266-5064.

    Google Scholar 

  • Demeulemeester, E. L., & Herroelen, W. S. (2002). Project scheduling: A research handbook. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Dodin, B. M. (1985). Bounding the project completion time distribution in PERT networks. Operations Research, 33, 862–881.

    Article  Google Scholar 

  • Gabrel, V., Murat, C., & Wu, L. (2013). New models for the robust shortest path problem: Complexity, resolution and generalization. Annals of Operations Research, 207(1), 97–120.

    Article  Google Scholar 

  • Gálvez, E. D., & Capuz-Rizo, S. F. (2016). Assessment of global sensitivity analysis methods for project scheduling. Computers & Industrial Engineering, 93, 110–120.

    Article  Google Scholar 

  • Goldratt, E. M. (1997). Critical chain. Great Barrington: The North River Press Publishing Corporation, MA.

    Google Scholar 

  • Goldratt, E. M., & Cox, J. (1984). The goal. Croton-on-Hudson: North River Press.

    Google Scholar 

  • Hall, N. G., & Posner, M. E. (2004). Sensitivity analysis for scheduling problems. Journal of Scheduling, 7(1), 49–83.

    Article  Google Scholar 

  • Hapke, M., Jaszkiewicz, A., & Slowinski, R. (1994). Fuzzy project scheduling system for software development. Fuzzy Sets and Systems, 67, 101–117.

    Google Scholar 

  • Hazır, Ö. (2008). Models and algorithms for deterministic and robust discrete time/cost trade-off problems (Unpublished PhD Dissertation, Bilkent University).

    Google Scholar 

  • Hazır, Ö., & Ulusoy, G. (2020). A classification and review of approaches and methods for modeling uncertainty in projects. International Journal of Production Economics, 223, 107522.

    Article  Google Scholar 

  • Hazır, O., Haouari, M., & Erel, E. (2010). Robust scheduling and robustness measures for the discrete time/cost trade-off problem. European Journal of Operational Research, 207(2), 633–664.

    Article  Google Scholar 

  • Hazır, O., Erel, E., & Gunalay, Y. (2011). Robust optimization models for the discrete time/cost trade-off problem. International Journal of Production Economics, 1, 87–95.

    Article  Google Scholar 

  • Hazır, Ö., Haouari, M., & Erel, E. (2015). Robust optimization for the discrete time-cost tradeoff problem with cost uncertainty. In C. Schwindt & J. Zimmermann (Eds.), Handbook on project management and scheduling (Vol. 2, pp. 865–874). Berlin: Springer.

    Google Scholar 

  • Hazır, Ö., Onur, A., & Kilic, H. T. (2016). A dynamic programming model for project scheduling under financial risks. 15th international conference on Project Management and Scheduling (PMS2016), 239–242, Valencia, Spain, 19–23 April 2016.

    Google Scholar 

  • Herroelen, W., & Leus, R. (2001). On the merits and pitfalls of critical chain scheduling. Journal of Operations Management, 19, 559–577.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty – Survey and research potentials. European Journal of Operational Research, 165, 289–306.

    Article  Google Scholar 

  • Kalai, R., Lamboray, C., & Vanderpooten, D. (2012). Lexicographic a robustness: An alternative to min-max criteria. European Journal of Operational Research, 220(3), 722–728.

    Article  Google Scholar 

  • Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications (Vol. 14). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. Journal of Scheduling, 11(2), 121–136.

    Article  Google Scholar 

  • Mehta, S. V., & Uzsoy, R. (1998). Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics and Automation, 14, 365–378.

    Article  Google Scholar 

  • Mohan, S., Gopalakrishnan, M., Balasubramanian, H., & Chandrashekar, A. (2007). A lognormal approximation of activity duration in PERT using two time estimates. Journal of the Operational Research Society, 58(6), 827–831.

    Article  Google Scholar 

  • PMI. (2013). A guide to the Project Management Body of Knowledge (PMBOK® Guide) (5th ed.). Newtown Square: Project Management Institute (PMI).

    Google Scholar 

  • Raz, T., Barnes, R., & Dvir, D. (2003). A critical look at critical chain project management. Project Management Journal, 34(4), 24–32.

    Google Scholar 

  • Sabuncuoğlu, I., & Bayız, M. (2000). Analysis of reactive scheduling problems in job shop environment. European Journal of Operational Research, 126, 567–586.

    Article  Google Scholar 

  • Stork, F. (2001). Stochastic resource-constrained project scheduling. PhD thesis, Technische Universität Berlin, Berlin, Germany.

    Google Scholar 

  • Tavares, L. V., Ferreira, J. A., & Coelho, J. S. (1998). On the optimal management of project risk. European Journal of Operational Research, 107(2), 451–469.

    Google Scholar 

  • Trietsch, D., Mazmanyan, L., Gevorgyan, L., & Baker, K. R. (2012). Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation. European Journal of Operational Research, 216(2), 386–396.

    Article  Google Scholar 

  • Tukel, O. I., Walter, O. R., & Ekşioğlu, S. D. (2006). An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, 172(2), 401–416.

    Article  Google Scholar 

  • Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: A framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39–62.

    Article  Google Scholar 

  • Vose, D. (2008). Quantitative risk analysis: A guide to Monte Carlo simulation modelling (3rd ed.). Chichester: Wiley.

    Google Scholar 

  • Zhang, J., Song, X., & Díaz, E. (2017). Critical chain project buffer sizing based on resource constraints. International Journal of Production Research, 55(3), 671–683.

    Article  Google Scholar 

  • Zimmermann, H. J. (2001). Fuzzy set theory and its applications (4th ed.). Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulusoy, G., Hazır, Ö. (2021). Project Scheduling Under Uncertainty. In: An Introduction to Project Modeling and Planning. Springer Texts in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-61423-2_12

Download citation

Publish with us

Policies and ethics