Skip to main content

Simulating Complexity Measures on Imbalanced Datasets

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

Classification tasks using imbalanced datasets are not challenging on their own. Classification models perform poorly on the minority class when the datasets present other difficulties, such as class overlap and complex decision border. Data complexity measures can identify such difficulties, better dealing with imbalanced datasets. They can capture information about data overlapping, neighborhood, and linearity. Even though they were recently decomposed by classes to deal with imbalanced datasets, their high computational cost prevents their use on applications with a time restriction, such as recommendation systems or high dimensional datasets. In this paper, we use a Meta-Learning approach to estimate the decomposed data complexity measures. We show that the simulated measures assess the difficulty of the dataset after applying preprocessing techniques to different sample sizes. We also show that this approach is significantly faster than computing the original measures, with a statistically similar estimation error for both classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/victorhb/SImbCoL.

  2. 2.

    https://archive.ics.uci.edu/ml/index.php.

  3. 3.

    http://www.openml.org/.

  4. 4.

    https://github.com/rivolli/mfe.

  5. 5.

    https://github.com/victorhb/ImbCoL.

  6. 6.

    https://github.com/victorhb/SImbCoL.

References

  1. Barella, V., Garcia, L., de Carvalho, A.: The influence of sampling on imbalanced data classification. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pp. 210–215. IEEE (2019)

    Google Scholar 

  2. Barella, V.H., Garcia, L.P.F., de Souto, M.P., Lorena, A.C., de Carvalho, A.: Data complexity measures for imbalanced classification tasks. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  3. Bensusan, H., Giraud-Carrier, C., Kennedy, C.: A higher-order approach to meta-learning. In: 10th International Conference Inductive Logic Programming (ILP), pp. 1–10 (2000)

    Google Scholar 

  4. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning - Applications to Data Mining. Cognitive Technologies, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-73263-1

    Book  MATH  Google Scholar 

  5. Cano, A., Zafra, A., Ventura, S.: Weighted data gravitation classification for standard and imbalanced data. IEEE Trans. Cybern. 43(6), 1672–1687 (2013)

    Article  Google Scholar 

  6. Castiello, C., Castellano, G., Fanelli, A.M.: Meta-data: characterization of input features for meta-learning. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 457–468. Springer, Heidelberg (2005). https://doi.org/10.1007/11526018_45

    Chapter  MATH  Google Scholar 

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  9. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98074-4

    Book  Google Scholar 

  10. Garcia, L.P.F., Lorena, A.C.: ECoL: complexity measures for classification problems (2018). https://CRAN.R-project.org/package=ECoL

  11. Gonzalez-Abril, L., Nuñez, H., Angulo, C., Velasco, F.: GSVM: An SVM for handling imbalanced accuracy between classes inbi-classification problems. Appl. Soft Comput. 17, 23–31 (2014)

    Article  Google Scholar 

  12. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: International Joint Conference on Neural Networks (IJCNN), pp. 1322–1328 (2008)

    Google Scholar 

  13. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)

    Article  Google Scholar 

  14. Ho, T.K., Basu, M., Law, M.H.C.: Measures of geometrical complexity in classification problems. In: Basu, M., Ho, T.K. (eds.) Data Complexity in Pattern Recognition, pp. 1–23. Springer, London (2006). https://doi.org/10.1007/978-1-84628-172-3_1

    Chapter  Google Scholar 

  15. Lorena, A.C., de Souto, M.C.P.: On measuring the complexity of classification problems. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9489, pp. 158–167. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26532-2_18

    Chapter  Google Scholar 

  16. Lorena, A.C., Garcia, L.P.F., Lehmann, J., de Souto, M.C.P., Ho, T.K.: How complex is your classification problem? A survey on measuring classification complexity. ACM Comput. Surv. (CSUR) 52(5) (2019)

    Google Scholar 

  17. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for machine learning classification. Mach. Learn. 107(1), 109–147 (2017). https://doi.org/10.1007/s10994-017-5629-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Orriols-Puig, A., Maciá, N., Ho, T.K.: Documentation for the data complexity library in C++. La Salle - Universitat Ramon Llull, Technical report (2010)

    Google Scholar 

  19. Peng, Y., Flach, P.A., Soares, C., Brazdil, P.: Improved dataset characterisation for meta-learning. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 141–152. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36182-0_14

    Chapter  Google Scholar 

  20. Pimentel, B.A., de Carvalho, A.C.P.L.F.: A new data characterization for selecting clustering algorithms using meta-learning. Inf. Sci. 477, 203–219 (2019)

    Google Scholar 

  21. Reif, M.: A comprehensive dataset for evaluating approaches of various meta-learning tasks. In: 1st International Conference on Pattern Recognition Applications and Methods, pp. 273–276 (2012)

    Google Scholar 

  22. Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier selection for non-experts. Pattern Anal. Appl. 17(1), 83–96 (2012). https://doi.org/10.1007/s10044-012-0280-z

    Article  MathSciNet  Google Scholar 

  23. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  24. Rivolli, A., Garcia, L.P.F., Soares, C., Vanschoren, J., de Carvalho, A.C.P.L.F.: Characterizing classification datasets: a study of meta-features for meta-learning. eprint arXiv (1808.10406), pp. 1–49 (2019)

    Google Scholar 

  25. Segrera, S., Pinho, J., Moreno, M.N.: Information-theoretic measures for meta-learning. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 458–465. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87656-4_57

    Chapter  Google Scholar 

  26. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2008)

    Article  Google Scholar 

  27. Soares, C., Petrak, J., Brazdil, P.: Sampling-based relative landmarks: systematically test-driving algorithms before choosing. In: Brazdil, P., Jorge, A. (eds.) EPIA 2001. LNCS, vol. 2258, pp. 88–95. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45329-6_12

    Chapter  Google Scholar 

  28. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. Mach. Learn. 87(2), 127–158 (2011). https://doi.org/10.1007/s10994-011-5277-0

    Article  MATH  Google Scholar 

  29. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

    Article  Google Scholar 

  30. Vukicevic, M., Radovanovic, S., Delibasic, B., Suknovic, M.: Extending meta-learning framework for clustering gene expression data with component-based algorithm design and internal evaluation measures. Int. J. Data Min. Bioinfor. (IJDMB) 14(2), 101–119 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES). The authors would like to thank CNPq, FAPESP (grant 2015/01382-0). The authors would like to thank CeMEAI-FAPESP (grant 2013/07375-0) for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barella, V.H., Garcia, L.P.F., de Carvalho, A.C.P.L.F. (2020). Simulating Complexity Measures on Imbalanced Datasets. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics