Skip to main content

A Reinforcement Learning Based Adaptive Mutation for Cartesian Genetic Programming Applied to the Design of Combinational Logic Circuits

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

The design of digital logic circuits involves transforming logical expressions into an electronic circuit seeking to minimize certain attributes such as the number of transistors. There are deterministic algorithms for this task, but they are limited to small problems. On the other hand metaheuristics can be used for solving this type of problem and Cartesian Genetic Programming (CGP) is widely adopted in the literature. In CGP, mutation is commonly the only operator for generating new candidate solutions. Thus, the performance of this metaheuristic is dependent on the proper choice of mutation and its parameters. Normally, CGP mutates the candidate solutions according to a uniform distribution. Thus, any modification has the same chance to occur. In order to improve the performance of CGP an adaptive mutation operator using an \(\epsilon \)-greedy strategy for bias the selection of gates is proposed here. The proposal is evaluated using problems of a benchmark from the literature. The results obtained indicate that the proposed adaptive mutation is promising and that its relative performance increases with the size of the problem.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Also, the authors thank the support of CNPq (312682/2018-2), FAPEMIG (APQ-00337-18), and UFJF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/FMoller/cgp-rl.

References

  1. Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis, vol. 2, 1st edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-1-4613-2821-6

    Book  MATH  Google Scholar 

  2. Berry, D.A., Fristedt, B.: Bandit Problems: Sequential Allocation of Experiments. Monographs on Statistics and Applied Probability, 1st edn. Springer, Heidelberg (1985). https://doi.org/10.1007/978-94-015-3711-7

    Book  MATH  Google Scholar 

  3. Manfrini, F.A.L., Bernardino, H.S., Barbosa, H.J.C.: A novel efficient mutation for evolutionary design of combinational logic circuits. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 665–674. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_62

    Chapter  Google Scholar 

  4. Manfrini, F., Bernardino, H., Barbosa, H.: On heuristics for seeding the initial population of cartesian genetic programming applied to combinational logic circuits. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 105–106 (2016)

    Google Scholar 

  5. Greenwood, G.W., Tyrrell, A.M.: Introduction to Evolvable Hardware: A Practical Guide for Designing Self-Adaptive Systems, 1st edn. Wiley-IEEE Press (2006)

    Google Scholar 

  6. Gittins, J., Glazebrook, K., Weber, R.: Multi-Armed Bandit Allocation Indices, vol. 33, 2nd edn. Wiley, Hoboken (2011)

    Book  Google Scholar 

  7. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6

    Chapter  Google Scholar 

  8. Goldman, B., Punch, W.: Analysis of cartesian genetic programming’s evolutionary mechanisms. IEEE Trans. Evol. Comput. 19, 1 (2014)

    Google Scholar 

  9. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. Am. Inst. Electr. Eng. Part I: Commun. Electron. 72(5), 593–599 (1953)

    Google Scholar 

  10. Katehakis, M., Veinott Jr., A.F.: The multi- armed bandit problem: decomposition and computation. Math. Oper. Res. 12, 262–268 (1987)

    Google Scholar 

  11. Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M.: Extreme compass and dynamic multi-armed bandits for adaptive operator selection. In: Congress on Evolutionary Computation (CEC), pp. 365–372 (2009)

    Google Scholar 

  12. McCluskey, E.: Minimization of Boolean functions. Bell Labs Tech. J. 35(6), 1417–1444 (1956)

    Article  MathSciNet  Google Scholar 

  13. Miller, J., Thomson, P., Fogarty, T., Ntroduction, I.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: a case study. In: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science (1999)

    Google Scholar 

  14. Miller, J.F.: Cartesian Genetic Programming. Natural Computing Series. Springer, Heidelberg (2011)

    Book  Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning Series, 2nd edn. A Bradford Book (1998)

    Google Scholar 

  16. da Silva, J., Bernardino, H.: Cartesian genetic programming with crossover for designing combinational logic circuits. In: Brazilian Conference on Intelligent Systems (BRACIS), pp. 145–150 (2018)

    Google Scholar 

  17. da Silva, J.E., Manfrini, F., Bernardino, H.S., Barbosa, H.: Biased mutation and tournament selection approaches for designing combinational logic circuits via cartesian genetic programming. In: Anais do Encontro Nacional de Inteligência Artificial e Computacional, pp. 835–846. SBC (2018)

    Google Scholar 

  18. da Silva, J.E.H., de Souza, L.A.M., Bernardino, H.S.: Cartesian genetic programming with guided and single active mutations for designing combinational logic circuits. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 396–408. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-7_33

    Chapter  Google Scholar 

  19. de Souza, L.A.M., da Silva, J.E.H., Chaves, L.J., Bernardino, H.S.: A benchmark suite for designing combinational logic circuits via metaheuristics. Appl. Soft Comput. 91, 106246 (2020)

    Article  Google Scholar 

  20. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.: Complexity of two-level logic minimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(7), 1230–1246 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico José Dias Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Möller, F.J.D., Bernardino, H.S., Gonçalves, L.B., Soares, S.S.R.F. (2020). A Reinforcement Learning Based Adaptive Mutation for Cartesian Genetic Programming Applied to the Design of Combinational Logic Circuits. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics