Skip to main content

A Fuzzy Reasoning Method Based on Ensembles of Generalizations of the Choquet Integral

  • Conference paper
  • First Online:
Book cover Intelligent Systems (BRACIS 2020)

Abstract

An efficient way to deal with classification problems is by using Fuzzy Rule-Based Classification Systems. A key point in this kind of classifier is the Fuzzy Reasoning Method (FRM). This mechanism is responsible for performing the classification of examples into predefined classes. There are different generalizations of the Choquet integral in the literature that are applied in the FRM. This paper presents an initial study of a new FRM that is ensemble-based, which combines different generalizations in a more effective final classifier. We have constructed two distinct ensemble decision-making methods considering the majority and weighted voting approaches. The experimental results demonstrate that the performance of the proposed methods is statistically equivalent compared to the state-of-art generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://keel.es.

References

  1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991). https://doi.org/10.1007/BF00153759

    Article  Google Scholar 

  2. Alcalá-Fdez, J., Alcalá, R., Herrera, F.: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)

    Article  Google Scholar 

  3. Alcalá-Fdez, J., et al.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)

    Article  Google Scholar 

  4. Alpaydin, E.: Introduction to Machine Learning, 4th edn. The MIT Press, Cambridge (2020)

    Google Scholar 

  5. Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Company, Singapore (2006)

    Book  Google Scholar 

  6. Altman, D.G.: Practical Statistics for Medical Research. CRC Press (1990)

    Google Scholar 

  7. Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D., Sanz, J.A.: Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms 2(2), 208–223 (2013)

    Article  Google Scholar 

  8. Bedregal, B.C., Dimuro, G.P., Bustince, H., Barrenechea, E.: New results on overlap and grouping functions. Inf. Sci. 249, 148–170 (2013)

    Article  MathSciNet  Google Scholar 

  9. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  10. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  11. Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal.: Theory Methods Appl. 72(3–4), 1488–1499 (2010)

    Article  MathSciNet  Google Scholar 

  12. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–1954)

    Google Scholar 

  13. Cordon, O., del Jesus, M.J., Herrera, F.: Analyzing the reasoning mechanisms in fuzzy rule based classification systems. Mathware Soft Comput. 5(2–3), 321–332 (1998)

    MATH  Google Scholar 

  14. Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approximate Reason. 20(1), 21–45 (1999)

    Article  Google Scholar 

  15. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  16. Dimuro, G.P., et al.: The state-of-art of the generalizations of the choquet integral: from aggregation and pre-aggregation to ordered directionally monotone functions. Inf. Fusion 57, 27–43 (2020). https://doi.org/10.1016/j.inffus.2019.10.005

    Article  Google Scholar 

  17. Dimuro, G.P., et al.: Generalized CF1F2-integrals: from choquet-like aggregation to ordered directionally monotone functions. Fuzzy Sets Syst. 378, 44–67 (2020). https://doi.org/10.1016/j.fss.2019.01.009

    Article  Google Scholar 

  18. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2nd Edition). Wiley-Interscience (2000)

    Google Scholar 

  19. Dzeroski, S., Zenko, B.: Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54(3), 255–273 (2004). https://doi.org/10.1023/B:MACH.0000015881.36452.6e

    Article  MATH  Google Scholar 

  20. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  21. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012)

    Google Scholar 

  22. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., Upper Saddle River (2007)

    MATH  Google Scholar 

  23. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression, vol. 354. Wiley-Interscience (2004)

    Google Scholar 

  24. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Mining Knowl. Discov. 19(3) (2009)

    Google Scholar 

  25. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  26. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)

    Article  Google Scholar 

  27. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules. Advanced Approaches to Linguistic Data Mining. Advanced Information Processing. Springer, Berlin (2005). https://doi.org/10.1007/b138232

  28. John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Conference in Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  29. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht (2000)

    Book  Google Scholar 

  30. Kuncheva, L.I.: Diversity in multiple classifier systems. Inf. Fusion 6(1), 3–4 (2005). Diversity in Multiple Classifier Systems

    Google Scholar 

  31. Lucca, G., Dimuro, G.P., Fernandez, J., Bustince, H., Bedregal, B., Sanz, J.A.: Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named \(C_{F_1F_2}\)-integrals. IEEE Trans. Fuzzy Syst. 27(1), 124–134 (2019). https://doi.org/10.1109/TFUZZ.2018.2871000

    Article  Google Scholar 

  32. Lucca, G., et al.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016)

    Article  Google Scholar 

  33. Lucca, G., Sanz, J.A., Dimuro, G.P., Borges, E.N., Santos, H., Bustince, H.: Analyzing the performance of different fuzzy measures with generalizations of the choquet integral in classification problems. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6, June 2019. https://doi.org/10.1109/FUZZ-IEEE.2019.8858815

  34. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: CF-integrals: A new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)

    Article  Google Scholar 

  35. Lucca, G., et al.: CC-integrals: Choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl.-Based Syst. 119, 32–43 (2017)

    Article  Google Scholar 

  36. Murofushi, T., Sugeno, M., Machida, M.: Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst. 64(1), 73–86 (1994)

    Article  MathSciNet  Google Scholar 

  37. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  38. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kauffman, San Francisco (1993)

    Google Scholar 

  39. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: IVTURS: a linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection. IEEE Trans. Fuzzy Syst. 21(3), 399–411 (2013)

    Article  Google Scholar 

  40. Siegel, S.: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York (1956)

    Google Scholar 

  41. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  42. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992). https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by PNPD/CAPES (464880/2019-00) and CAPES Financial Code 001, CNPq (301618/2019-4), FAPERGS (17/2551-0000872-3, 19/2551-0001279-9, 19/2551-0001660), and AEI/UE, FEDER (PID2019-108392GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Lucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucca, G. et al. (2020). A Fuzzy Reasoning Method Based on Ensembles of Generalizations of the Choquet Integral. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics