Skip to main content

Applying Dynamic Evolutionary Optimization to the Multiobjective Knapsack Problem

  • Conference paper
  • First Online:
  • 1189 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12319))

Abstract

Real-world discrete problems are often also dynamic making them very challenging to be optimized. Here we focus on the employment of evolutionary algorithms to deal with such problems. In the last few years, many evolutionary optimization algorithms have investigated dynamic problems, being that some of the most recent papers investigate formulations with more than one objective to be optimized at the same time. Although evolutionary optimization had revealed very competitive algorithms in different applications, both multiobjective formulations and dynamic problems need to apply specific strategies to perform well. In this work, we investigate four algorithms proposed for dynamic multiobjective problems: DNSGA-II, MOEA/D-KF, MS-MOEA and DNSGA-III. The first three were previously proposed in the literature, where they were applied just in continuous problems. We aim to observe the behavior of these algorithms in a discrete problem: the Dynamic Multiobjective Knapsack Problems (DMKP). Our results have shown that some of them are also promising for applying to problems with discrete space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azzouz, R., Bechikh, S., Ben Said, L.: Dynamic multi-objective optimization using evolutionary algorithms: a survey. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization. ALO, vol. 20, pp. 31–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42978-6_2

    Chapter  Google Scholar 

  2. Azzouz, R., Bechikh, S., Ben Said, L.: Multi-objective optimization with dynamic constraints and objectives: new challenges for evolutionary algorithms. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 615–622, July 2015

    Google Scholar 

  3. Baykasoglu, A., Ozsoydan, F.B.: An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst. Appl. 41(8), 3712–3725 (2014)

    Article  Google Scholar 

  4. Branke, J.: Evolutionary optimization in dynamic environments. In: Genetic Algorithms and Evolutionary Computation, vol. 3. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  5. Branke, J., Orbayı, M., Uyar, Ş.: The role of representations in dynamic knapsack problems. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 764–775. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_74

    Chapter  Google Scholar 

  6. Cámara, M., Ortega, J., Toro, F.J.: Parallel processing for multi-objective optimization in dynamic environments. In: 2007 IEEE International Parallel and Distributed Processing Symposium, pp. 1–8. IEEE, March 2007

    Google Scholar 

  7. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_60

    Chapter  Google Scholar 

  10. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  11. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

    Article  MATH  Google Scholar 

  12. França, T.P., de Queiroz Lafetá, T.F., Martins, L.G.A., de Oliveira, G.M.B.: A comparative analysis of moeas considering two discrete optimization problems. In: 2017 Brazilian Conference on Intelligent Systems (BRACIS), pp. 402–407. IEEE, October 2017

    Google Scholar 

  13. França, T.P., Martins, L. G., Oliveira, G.M.: MACO/NDS: many-objective ant colony optimization based on non-dominated sets. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, July 2018

    Google Scholar 

  14. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2008)

    Google Scholar 

  15. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419–2426. IEEE, June 2008

    Google Scholar 

  16. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  17. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory (1961)

    Google Scholar 

  18. Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In: Knapsack Problems, pp. 235–283. Springer, Heidelberg (2004)

    Google Scholar 

  19. Koo, W.T., Goh, C.K., Tan, K.C.: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. Memetic Comput. 2(2), 87–110 (2010)

    Article  Google Scholar 

  20. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 711–716). IEEE, May 2002

    Google Scholar 

  21. Lafeta, T.F.Q., Bueno, M.L., Brasil, C., Oliveira, G.M.: MEANDS: a many-objective evolutionary algorithm based on non-dominated decomposed sets applied to multicast routing. Appl. Soft Comput. 62, 851–866 (2018)

    Article  Google Scholar 

  22. Lafeta, T.F.Q., Oliveira, G.M.B.: An improved version of a many-objective evolutionary algorithm based on non-dominated decomposed sets (MEANDS-II). In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3673–3678. IEEE, October 2019

    Google Scholar 

  23. Mankiewicz, R.: The story of mathematics. Cassell (2000)

    Google Scholar 

  24. Martins, L., França, T., Oliveira, G.: Bio-inspired algorithms for many-objective discrete optimization. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pp. 515–520. IEEE, October 2019

    Google Scholar 

  25. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science and Business Media (2012)

    Google Scholar 

  26. Muruganantham, A., Tan, K.C., Vadakkepat, P.: Solving the IEEE CEC 2015 dynamic benchmark problems using kalman filter based dynamic multiobjective evolutionary algorithm. Intelligent and Evolutionary Systems. PALO, vol. 5, pp. 239–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27000-5_20

    Chapter  Google Scholar 

  27. Richter, H.: Dynamic fitness landscape analysis. In: Yang, S., Yao, X. (eds.) Evolutionary Computation for Dynamic Optimization Problems, vol. 490, pp. 269–297. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38416-5_11

    Chapter  Google Scholar 

  28. Roy, R., Mehnen, J.: Dynamic multi-objective optimisation for machining gradient materials. CIRP Ann. 57(1), 429–432 (2008)

    Article  Google Scholar 

  29. Sahmoud, S., Topcuoglu, H.R.: A memory-based NSGA-II algorithm for dynamic multi-objective optimization problems. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 296–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31153-1_20

    Chapter  Google Scholar 

  30. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  31. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  32. Wang, Y., Li, B.: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: 2009 IEEE Congress on Evolutionary Computation, pp. 630–637. IEEE, May 2009

    Google Scholar 

  33. Wang, Y., Li, B.: Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization. Memet. Comput. 2(1), 3–24 (2010)

    Article  Google Scholar 

  34. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank FAPEMIG, CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thiago Fialho de Queiroz Lafetá or Gina Maira Barbosa de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Queiroz Lafetá, T.F., de Oliveira, G.M.B. (2020). Applying Dynamic Evolutionary Optimization to the Multiobjective Knapsack Problem. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics