Skip to main content

Domain Adaptation of Transformers for English Word Segmentation

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

Word segmentation can contribute to improve the results of natural language processing tasks on several problem domains, including social media sentiment analysis, source code summarization and neural machine translation. Taking the English language as a case study, we fine-tune a Transformer architecture which has been trained through the Pre-trained Distillation (PD) algorithm, while comparing it to previous experiments with recurrent neural networks. We organize datasets and resources from multiple application domains under a unified format, and demonstrate that our proposed architecture has competitive performance and superior cross-domain generalization in comparison with previous approaches for word segmentation in Western languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/google-research/bert.

  2. 2.

    https://github.com/jiangpinglei/BERT_ChineseWordSegment.

  3. 3.

    https://www.grupocole.org/software/VCS/segmnt/models/.

  4. 4.

    Standard Generalized Markup Language is a metalanguage through which it is possible to define markup languages for documents.

  5. 5.

    https://github.com/attardi/wikiextractor.

  6. 6.

    http://www.statmt.org/wmt17/.

  7. 7.

    https://github.com/afmdnf/hashtag-lstm.

  8. 8.

    https://www.nltk.org/_modules/nltk/tokenize/punkt.html.

References

  1. Sentiment140 - a Twitter sentiment analysis tool (2009). http://help.sentiment140.com/for-students

  2. EMNLP 2017 - second conference on machine translation (WMT17) (2017). http://www.statmt.org/wmt17/. Accessed 17 May 2020

  3. Celebi, A., Ozgur, A.: Segmenting hashtags and analyzing their grammatical structure. J. Assoc. Inf. Sci. Technol. 69 (2017). https://doi.org/10.1002/asi.23989

  4. Chen, X., Shi, Z., Qiu, X., Huang, X.: Adversarial multi-criteria learning for Chinese word segmentation (2017)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Doval, Y., Gómez-Rodríguez, C.: Comparing neural- and N-gram-based language models for word segmentation. J. Assoc. Inf. Sci. Technol. 70(2), 187–197 (2018). 10/gfs6rd, https://doi.org/10.1002/asi.24082, 105

  7. Huang, W., Cheng, X., Chen, K., Wang, T., Chu, W.: Toward fast and accurate neural Chinese word segmentation with multi-criteria learning. arXiv:1903.04190 [cs], March 2019. http://arxiv.org/abs/1903.04190, 97.9

  8. Inuzuka, M.A., Rocha, A.S., Nascimento, H.A.D.: Segmentation of words written in the Latin alphabet: a systematic review. In: Quaresma, P., Vieira, R., Aluísio, S., Moniz, H., Batista, F., Gonçalves, T. (eds.) PROPOR 2020. LNCS (LNAI), vol. 12037, pp. 291–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41505-1_28

    Chapter  Google Scholar 

  9. Lei, J.: Bert (2019). Accessed 17 May 2020

    Google Scholar 

  10. Li, J., Du, Q., Shi, K., He, Y., Wang, X., Xu, J.: Helpful or not? An investigation on the feasibility of identifier splitting via CNN-BiLSTM-CRF (2018)

    Google Scholar 

  11. Li, X., Meng, Y., Sun, X., Han, Q., Yuan, A., Li, J.: Is word segmentation necessary for deep learning of Chinese representations? arXiv preprint arXiv:1905.05526 (2019)

  12. Ma, J., Ganchev, K., Weiss, D.: State-of-the-art Chinese word segmentation with Bi-LSTMs. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4902–4908. Association for Computational Linguistics, Brussels, October–November 2018. https://doi.org/10.18653/v1/D18-1529, https://www.aclweb.org/anthology/D18-1529

  13. Maddela, M., Xu, W., Preoţiuc-Pietro, D.: Multi-task pairwise neural ranking for hashtag segmentation (2019)

    Google Scholar 

  14. Morabia, K., Bhanu Murthy, N.L., Malapati, A., Samant, S.: SEDTWik: segmentation-based event detection from tweets using Wikipedia. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pp. 77–85. Association for Computational Linguistics, Minneapolis, June 2019. https://doi.org/10.18653/v1/N19-3011, https://www.aclweb.org/anthology/N19-3011

  15. Pan, Y., Li, X., Yang, Y., Dong, R.: Morphological word segmentation on agglutinative languages for neural machine translation (2020)

    Google Scholar 

  16. Rhodes, D.: Conditional random field Latin word segmenter (2013)

    Google Scholar 

  17. Saenger, P.: Space Between Words: The Origins of Silent Reading. Stanford University Press, Palo Alto (1997)

    Google Scholar 

  18. Shi, X., Huang, H., Jian, P., Guo, Y., Wei, X., Tang, Y.-K.: Neural Chinese word segmentation as sequence to sequence translation. In: Cheng, X., Ma, W., Liu, H., Shen, H., Feng, S., Xie, X. (eds.) SMP 2017. CCIS, vol. 774, pp. 91–103. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6805-8_8

    Chapter  Google Scholar 

  19. Souza, F., Nogueira, R., Lotufo, R.: Portuguese named entity recognition using BERT-CRF. arXiv:1909.10649 [cs], February 2020. zSCC: NoCitationData[s0]

  20. Sproat, R.W., Shih, C., Gale, W., Chang, N.: A stochastic finite-state word-segmentation algorithm for Chinese. Comput. Linguist. 22(3), 377–404 (1996). https://www.aclweb.org/anthology/J96-3004

    Google Scholar 

  21. Turc, I., Chang, M.W., Lee, K., Toutanova, K.: Well-read students learn better: on the importance of pre-training compact models (2019)

    Google Scholar 

  22. Wang, B., Pan, B., Li, X., Li, B.: Towards evaluating the robustness of Chinese BERT classifiers (2020)

    Google Scholar 

  23. Yang, H.: BERT meets Chinese word segmentation (2019)

    Google Scholar 

  24. Ye, Y., Zhang, Y., Li, W., Qiu, L., Sun, J.: Improving cross-domain Chinese word segmentation with word embeddings. In: Proceedings of the 2019 Conference of the North, pp. 2726–2735 (2019). https://doi.org/10.18653/v1/N19-1279, http://arxiv.org/abs/1903.01698, arXiv: 1903.01698

  25. Zhang, Y., Clark, S.: Syntactic processing using the generalized perceptron and beam search. Comput. Linguist. 37(1), 105–151 (2011). https://doi.org/10.1162/coli_a_00037, https://www.aclweb.org/anthology/J11-1005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruan Chaves Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, R.C., Rocha, A.S., Inuzuka, M.A., do Nascimento, H.A.D. (2020). Domain Adaptation of Transformers for English Word Segmentation. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics