Skip to main content

A Robust Automatic License Plate Recognition System for Embedded Devices

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

Automatic License Plate Recognition (ALPR) systems are used in many real-world applications, such as road traffic monitoring and traffic law enforcement, and the use of deep learning can result in efficient methods. In this work, we present an ALPR system efficient for edge computing, using a combination of MobileNet-SSD for vehicle detection, Tiny YOLOv3 for license plate detection and OCR-net for character recognition. This method was evaluated in two datasets on a NVIDIA Jetson TX2 system, obtaining 96.87% of accuracy and 8 FPS of framerate in a public real-world scenario dataset and achieving 90.56% of accuracy and 11 FPS of framerate in a private dataset of traffic monitoring images, considering the recognition of at least six characters. It is faster than related works with similar deep learning approaches, that achieved at most 2 FPS, and slightly inferior in accuracy, with less than 10% of difference in the worst scenario. This shows the proposed method is well balanced between accuracy and speed, thus, suitable for embedded devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Björklund, T., Fiandrotti, A., Annarumma, M., Francini, G., Magli, E.: Robust license plate recognition using neural networks trained on synthetic images. Pattern Recogn. 93, 134–146 (2019)

    Article  Google Scholar 

  2. Bulan, O., Kozitsky, V., Ramesh, P., Shreve, M.: Segmentation-and annotation-free license plate recognition with deep localization and failure identification. IEEE Trans. Intell. Transp. Syst. 18(9), 2351–2363 (2017)

    Article  Google Scholar 

  3. Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2012)

    Article  Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Gonçalves, G.R., Diniz, M.A., Laroca, R., Menotti, D., Schwartz, W.R.: Real-time automatic license plate recognition through deep multi-task networks. In: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 110–117. IEEE (2018)

    Google Scholar 

  6. Gonçalves, G.R., Diniz, M.A., Laroca, R., Menotti, D., Schwartz, W.R.: Multi-task learning for low-resolution license plate recognition. In: Nyström, I., Hernández Heredia, Y., Milián Núñez, V. (eds.) CIARP 2019. LNCS, vol. 11896, pp. 251–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33904-3_23

    Chapter  Google Scholar 

  7. Gonçalves, G.R., Menotti, D., Schwartz, W.R.: License plate recognition based on temporal redundancy. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2577–2582. IEEE (2016)

    Google Scholar 

  8. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  9. Laroca, R., et al.: A robust real-time automatic license plate recognition based on the YOLO detector. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2018)

    Google Scholar 

  10. Laroca, R., Zanlorensi, L.A., Gonçalves, G.R., Todt, E., Schwartz, W.R., Menotti, D.: An efficient and layout-independent automatic license plate recognition system based on the YOLO detector. arXiv preprint arXiv:1909.01754 (2019)

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  12. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  13. Mittal, S.: A survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Architect. 97, 428–442 (2019)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  15. Sang, J., et al.: An improved YOLOv2 for vehicle detection. Sensors 18(12), 4272 (2018)

    Article  Google Scholar 

  16. Silva, S.M., Jung, C.R.: Real-time Brazilian license plate detection and recognition using deep convolutional neural networks. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 55–62. IEEE (2017)

    Google Scholar 

  17. Silva, S.M., Jung, C.R.: License plate detection and recognition in unconstrained scenarios. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 593–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_36

    Chapter  Google Scholar 

  18. Wang, L., Lu, Y., Wang, H., Zheng, Y., Ye, H., Xue, X.: Evolving boxes for fast vehicle detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 1135–1140. IEEE (2017)

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Also Pedro Pedrosa Rebouças Filho acknowledges the sponsorship from the Brazilian National Council for Research and Development (CNPq) via Grants Nos. 431709/2018-1 and 311973/2018-3. Also, the authors would like to thank The Ceará State Foundation for the Support of Scientific and Technological Development (FUNCAP) for the financial support (6945087/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pedrosa Rebouças Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandes, L.S. et al. (2020). A Robust Automatic License Plate Recognition System for Embedded Devices. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics