Skip to main content

A Differential Evolution Algorithm for Contrast Optimization

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12319))

Included in the following conference series:

Abstract

Image Enhancement is one of the most important phases of the image processing system. Contrast Enhancement plays a key role in this step. Histogram Equalization (HE) is one of the main tools used to improve the contrast of an image. However, the use of HE causes an increase in the natural brightness of the image, which is not desirable in many types of applications such as consumer electronics products. To solve these limitations, it is proposed in this paper a variation of the Differential Evolution metaheuristic algorithm for Contrast Optimization called DECO. The results obtained were statistically compared with other techniques and metaheuristic algorithms. The results showed that DECO is competitive compared with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braik, M., Sheta, A.F., Ayesh, A.: Image enhancement using particle swarm optimization. In: World Congress on Engineering, vol. 1, pp. 978–988 (2007)

    Google Scholar 

  2. Chen, J., Yu, W., Tian, J., Chen, L., Zhou, Z.: Image contrast enhancement using an artificial bee colony algorithm. Swarm Evol. Comput. 38, 287–294 (2018)

    Article  Google Scholar 

  3. Chen, S.D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  4. DaPonte, J.S., Fox, M.D.: Enhancement of chest radiographs with gradient operators. IEEE Trans. Med. Imaging 7(2), 109–117 (1988)

    Article  Google Scholar 

  5. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  6. Draa, A., Bouaziz, A.: An artificial bee colony algorithm for image contrast enhancement. Swarm Evol. Comput. 16, 69–84 (2014)

    Article  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E., et al.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  8. Gorai, A., Ghosh, A.: Gray-level image enhancement by particle swarm optimization. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 72–77. IEEE (2009)

    Google Scholar 

  9. Hashemi, S., Kiani, S., Noroozi, N., Moghaddam, M.E.: An image contrast enhancement method based on genetic algorithm. Pattern Recogn. Lett. 31(13), 1816–1824 (2010)

    Article  Google Scholar 

  10. Hoseini, P., Shayesteh, M.G.: Hybrid ant colony optimization, genetic algorithm, and simulated annealing for image contrast enhancement. In: IEEE Congress on Evolutionary Computation, pp. 1–6. IEEE (2010)

    Google Scholar 

  11. Maini, R., Aggarwal, H.: A comprehensive review of image enhancement techniques. arXiv preprint arXiv:1003.4053 (2010)

  12. Munteanu, C., Lazarescu, V.: Evolutionary contrast stretching and detail enhancement of satellite images. In: Proceedings of MENDEL 1999, pp. 94–99 (1999)

    Google Scholar 

  13. Munteanu, C., Rosa, A.: Evolutionary image enhancement with user behavior modeling. ACM SIGAPP Appl. Comput. Rev. 9(1), 8–14 (2001)

    Article  Google Scholar 

  14. Munteanu, C., Rosa, A.: Gray-scale image enhancement as an automatic process driven by evolution. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(2), 1292–1298 (2004)

    Article  Google Scholar 

  15. Poli, R., Cagnoni, S.: Evolution of pseudo-colouring algorithms for image enhancement with interactive genetic programming. Cognitive Science Research Papers-University OF Birmingham CSRP (1997)

    Google Scholar 

  16. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  17. Rosin, P.L.: Edges: saliency measures and automatic thresholding. Mach. Vis. Appl. 9(4), 139–159 (1997)

    Article  Google Scholar 

  18. Saitoh, F.: Image contrast enhancement using genetic algorithm. In: IEEE SMC 1999 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), vol. 4, pp. 899–904. IEEE (1999)

    Google Scholar 

  19. dos Santos Coelho, L., Sauer, J.G., Rudek, M.: Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos, Solitons Fractals 42(1), 522–529 (2009)

    Article  Google Scholar 

  20. Storn, R., Price, K.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 842–844. IEEE (1996)

    Google Scholar 

  21. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Britto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Costa Oliveira, A.L., Britto, A. (2020). A Differential Evolution Algorithm for Contrast Optimization. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics