Random Algebraic Lattices and Codes for Wireless Communications

Part of the Mathematical Engineering book series (MATHENGIN)


In this chapter we will review classical and recent advances on “probabilistic” constructions for Euclidean lattices. We will then show recent refinements of these techniques using algebraic number theory. The interest in algebraic lattices is twofold: on the one hand, they are key elements for the construction of sphere packings with the best known asymptotic density; on the other hand, they provide effective solutions to a number of wireless communication problems. We will focus on applications to fading channels, multiple-input-multiple-output (MIMO) channels and to information-theoretic security.


  1. 1.
    Belfiore, J., Oggier, F.: An error probability approach to MIMO wiretap channels 61(8), 3396–3403 (2013).
  2. 2.
    Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In: Proceedings of CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 294–311. Springer, Berlin (2012)Google Scholar
  3. 3.
    Blichfeldt, H.: The minimum values of positive quadratic forms in six, seven and eight variables. Math. Zeitsch. 39, 1–15 (1935). MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Campello, A.: Random ensembles of lattices from generalized reductions. IEEE Trans. Inf. Theory. 64(7), 5231–5239 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Campello, A., Ling, C., Belfiore, J.C.: Algebraic lattice codes achieve the capacity of the compound block-fading channel. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 910–914 (2016).
  6. 6.
    Campello, A., Liu, L., Ling, C.: Multilevel code construction for compound fading channels. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1008–1012 (2017).
  7. 7.
    Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin (1997)zbMATHGoogle Scholar
  8. 8.
    Conway, J.H., Sloane, N.J.A.: Sphere-Packings, Lattices, and Groups. Springer, New York (1998)Google Scholar
  9. 9.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)zbMATHGoogle Scholar
  11. 11.
    Hlawka, E.: Zur geometrie der zahlen. Math. Zeitsch. 49, 285–312 (1943). MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ling, C., Belfiore, J.C.: Achieving AWGN channel capacity with lattice gaussian coding. IEEE Trans. Inf. Theory 60(10), 5918–5929 (2014). MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ling, C., Luzzi, L., Belfiore, J.C., Stehle, D.: Semantically secure lattice codes for the Gaussian wiretap channel. IEEE Trans. Inf. Theory 60(10), 6399–6416 (2014). MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Loeliger, H.A.: Averaging bounds for lattices and linear codes. IEEE Trans. Inf. Theory 43(6), 1767–1773 (1997). MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Luzzi L., Vehkalahti, R.: Almost universal codes achieving ergodic MIMO capacity within a constant gap. IEEE Trans. Inf. Theory 63(5), 3224–3241 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Luzzi, L., Vehkalahti, R., Ling, C.: Almost universal codes for MIMO wiretap channels. IEEE Trans. Inf. Theory 64(11), 7218–7241 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ordentlich, O., Erez, U.: Precoded integer-forcing universally achieves the MIMO capacity to within a constant gap. IEEE Trans. Inf. Theory 61(1), 323–340 (2015). MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Poltyrev, G.: On coding without restrictions for the AWGN channel. IEEE Trans. Inf. Theory 40, 409–417 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rogers, C.A.: Packing and Covering. Cambridge University Press, Cambridge (1964)zbMATHGoogle Scholar
  20. 20.
    Rush, J.A.: A lower bound on packing density. Invent. Math. 98(3), 499–509 (1989). MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Schaefer, R.F., Loyka, S.: The secrecy capacity of compound Gaussian MIMO wiretap channels. IEEE Trans. Inf. Theory 61(10), 5535–5552 (2015). MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Siegel, C.L.: A mean value theorem in geometry of numbers. Ann. Math. 46(2), 340–347 (1945). MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  25. 25.
    Vance, S.: Improved sphere packing lower bounds from Hurwitz lattices. Adv. Math. 227(5), 2144–2156 (2011).
  26. 26.
    Venkatesh, A.: A note on sphere packings in high dimension. Int. Math. Res. Not. (2012).
  27. 27.
    Liu, L., Yan, Y., Ling, C., Wu, X.: Construction of capacity-achieving lattice codes: Polar lattices. IEEE Trans. Commun. 67(2), 915–928 (2019)CrossRefGoogle Scholar
  28. 28.
    Zamir, R.: Lattice Coding for Signals and Networks. Cambridge University Press, Cambridge (2014)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK

Personalised recommendations