Skip to main content

Trophic Relationships

  • 869 Accesses

Abstract

The trophic categories of riverine food webs reflect the basal resources available to consumers, including benthic and planktonic algae, detritus with its associated microbial assemblage, higher plants, and other animals. Invertebrates typically are divided into functional feeding groups and fishes into guilds. Among the invertebrates, grazers ingest periphyton, shredders feed on large particles of organic matter such as leaves, collectors feed on small organic particles either from suspension or the streambed, and predators feed on other animals. Fish trophic categories rely primarily on what resources is consumed, but also may consider feeding location and morphology. Commonly used categories include herbivores, detritivores, planktivores, omnivores, benthic invertivores, midwater-surface feeders, and piscivores. Amphibians, reptiles, birds, and mammals also can be important in riverine food webs. Many consumers are generalist feeders, however, and so trophic organization in river ecosystems can be complex and indistinct. Studies often refer to the high frequency of dietary plasticity, or characterize many of the species present as omnivorous, generalists, or opportunists. Even in the tropics, where some wonderful examples of ecological specialization can be found, many observers have opined that a generalist or opportunistic feeding strategy seems to characterize most species.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61286-3_9
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-61286-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 9.1

(Reproduced from Cummins and Klug 1979)

Fig. 9.2

(Reproduced from Graca et al. 2001)

Fig. 9.3

(Reproduced from Cummins and Klug 1979)

Fig. 9.4

(Reproduced from Edler and Georgian 2004)

Fig. 9.5

(Reproduced from Crosskey (1990) and SEM photographs of D.A. Craig)

Fig. 9.6

(Reproduced from Cummins and Klug 1979)

Fig. 9.7

Photos courtesy of Angus McIntosh

Fig. 9.8

(Reproduced from Allan 1982)

Fig. 9.9

(Reproduced from Grubaugh et al. 1996)

Fig. 9.10

(Reproduced from Stepenuck et al. 2002)

Fig. 9.11

(Reproduced from Collins et al. 2016)

Fig. 9.12

(Reproduced from Pouilly et al. 2006)

Fig. 9.13

(Reproduced from Pouilly et al. 2003)

Fig. 9.14

(Reproduced from Delariva and Agostinho 2001)

Fig. 9.15

(Reproduced from Winemiller 1991)

References

  • Aarts BGW, Nienhuis PH (2003) Fish zonations and guilds as the basis for assessment of ecological integrity of large rivers. Hydrobiol 500:157–178

    Google Scholar 

  • Abilhoa V, Braga RR, Bornatowski H, Vitule JRS (2011) Fishes of the Atlantic rain forest streams: Ecological patterns and conservation. In: Grillo O. (Ed.) Changing Diversity in Changing Environment. InTechopen

    Google Scholar 

  • Albert JS, Petry P, Reis RE (2011) Major biogeographic and phylogenetic patterns. In: Albert JS, Reis RE (eds) Historical biogeography of neotropical freshwater fishes. University of California Press, Berkeley, CA, pp 21–57

    Google Scholar 

  • Alfaro ME (2002) Forward attack modes of aquatic feeding garter snakes. Funct Ecol 16:204–215

    CrossRef  Google Scholar 

  • Allan JD (1982) Feeding habits and prey consumption of three setipalpian stoneflies (Plecoptera) in a mountain stream. Ecology 63:26–34

    CrossRef  Google Scholar 

  • Allan JD, Flecker AS (1988) Prey preference in stoneflies: a comparative analysis of prey vulnerability. Oecologia 76:496–503

    Google Scholar 

  • Anderson JT, Rojas SJ, Flecker AS (2009) High-quality seed dispersal by fruit-eating fishes in Amazonian floodplain habitats. Oecologia 161:279–290

    PubMed  CrossRef  Google Scholar 

  • Anderson NH, Sedell JR (1979) Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol 24:351–377

    CrossRef  Google Scholar 

  • Anderson NH, Sedell JR, Roberts LM, Triska FJ (1978) The role of aquatic invertebrates in processing of wood debris in coniferous forest. Am Midl Nat 100:64–82

    CAS  CrossRef  Google Scholar 

  • Arrington DA, Winemiller KO, Layman CA (2005) Community assembly at the patch scale in a species rich tropical river. Oecologia 144:157–167

    PubMed  CrossRef  Google Scholar 

  • Arsuffi TL, Suberkropp K (1984) Leaf processing capabilities of aquatic Hyphomycetes: interspecific differences and influence on shredder feeding preferences. Oikos 42:144–154

    CrossRef  Google Scholar 

  • Atkinson CL, First MR, Covich AP et al (2011) Suspended material availability and filtration-biodeposition processes performed by a native and invasive bivalve species in streams. Hydrobiologia 667:191–204

    CAS  CrossRef  Google Scholar 

  • Bakker ES, Wood KA, Pagès JF et al (2016) Herbivory on freshwater and marine macrophytes: a review and perspective. Aquat Bot 135:18–36. https://doi.org/10.1016/j.aquabot.2016.04.008

    CrossRef  Google Scholar 

  • Barbarino Duque A, Winemiller KO (2003) Dietary segregation among large catfishes of the Apure and Arauca Rivers, Venezuela. J Fish Biol 63:410–427. https://doi.org/10.1046/j.1095-8649.2003.00163.x

    CrossRef  Google Scholar 

  • Barlöcher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91:83–94

    CrossRef  Google Scholar 

  • Barlöcher F, Kendrick B (1975) Leaf-conditioning by microorganisms. Oecologia 20:359–362

    PubMed  CrossRef  Google Scholar 

  • Barlöcher FB (1982) The contribution of fungal enzymes to the digestion of leaves by Gammarus fossarum Koch (Amphipoda). Oecologia 52:1–4

    PubMed  CrossRef  Google Scholar 

  • Barlöcher FB (1983) Seasonal variation of standing crop and digestibility of CPOM in a Swiss Jura stream. Ecology 64:1266–1272

    CrossRef  Google Scholar 

  • Bellamy LS, Reynoldson TB (1974) Behaviour in competition for food amongst lake-dwelling Triclads. Oikos 25:356–364

    CrossRef  Google Scholar 

  • Best RC, da Silva VMF (1984) Amazon river dolphin, Boto Inia geoffrensis (de Blainville 1817). In: Ridgway SH, Harrison RJ (eds) Handbook of marine mammals. Academic Press, London, pp 1–23

    Google Scholar 

  • Bierregaard RO, Poole AF, Martell MS et al (2016) Osprey (Pandion haliaetus). In: Rodewold PG (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY

    Google Scholar 

  • Bonato KO, Burress ED, Fialho CB (2017) Dietary differentiation in relation to mouth and tooth morphology of a neotropical characid fish community. Zool Anz 267:31–40

    CrossRef  Google Scholar 

  • Booth DB, Roy AH, Smith B, Capps KA (2016) Global perspectives on the urban stream syndrome. Freshw Sci 35:412–420

    CrossRef  Google Scholar 

  • Bowen SH (1983) Detritivory in neotropical fish communities. Dr W. Junk Publishers, The Hague

    CrossRef  Google Scholar 

  • Boyero L, Perason RG, Dudgeon D et al (2011) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–1848

    PubMed  CrossRef  Google Scholar 

  • Brecko J, Vervust B, Herrel A, Van Damme R (2011) Head morphology and diet in the dice snake, Natrix tessellata. Mertensiella 18:20–29

    Google Scholar 

  • Brown SA, Ruxton GD, Pickup RW, Humphries S (2005) Seston capture by Hydropsyche siltalai and the accuracy of capture efficiency estimates. Freshw Biol 50:113–126

    CrossRef  Google Scholar 

  • Bruder A, Schindler MH, Moretti MS (2014) Litter decomposition in a temperate and a tropical stream : the effects of species mixing, litter quality and shredders, 438–449

    Google Scholar 

  • Calow P (1975a) The feeding strategies of two freshwater gastropods, Ancylus fluviatilis Miill. and Planorbis contortus Linn. (Pulmonata), in terms of ingestion rates and absorption efficiencies. Oecologia 20:33–49

    CAS  PubMed  CrossRef  Google Scholar 

  • Calow P (1975b) Defaecation strategies of two freshwater gastropods, Ancylus fluviatilis Miill. and Planorbis contortus Linn. (Pulmonata) with a comparison of field and laboratory estimates of food absorption rate. Oecologia 20:51–63

    CAS  PubMed  CrossRef  Google Scholar 

  • Calvo C, Mormul RP, Figueiredo BRS et al (2019) Herbivory can mitigate, but not counteract, the positive effects of warming on the establishment of the invasive macrophyte Hydrilla verticillata. Biol Invasions 21:59–66

    CrossRef  Google Scholar 

  • Cargill AS, Cummins KW, Hanson BJ, Lowry RR (1985) The role of lipids as feeding stimulants for shredding aquatic insects. Freshw Biol 15:455–464

    CAS  CrossRef  Google Scholar 

  • Chance M (1970) The functional morphology of the mouthparts of black fly larvae (Diptera: Simuliidae). Quaest Entomol 6:245–284

    Google Scholar 

  • Chance M, Craig DA (1986) Hydrodynamics and behavior of Simuliidae larvae (Diptera. Can J Zool 64:1295–1309

    CrossRef  Google Scholar 

  • Christian AD, Smith BN, Berg DJ et al (2004) Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca:Unionidae) in 2 small Ohio streams. J North Am Benthol Soc 23:101–113

    CrossRef  Google Scholar 

  • Ciborowski JJH, Craig DA, Fry KM (1997) Dissolved organic matter as food for black fly larvae (Diptera:Simuliidae). J North Am Benthol Soc 16:771–780

    CrossRef  Google Scholar 

  • Clare EL, Barber BR, Sweeney BW et al (2011) Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol Ecol 20:1772–1780

    CAS  PubMed  CrossRef  Google Scholar 

  • Clavero M, Prenda J, Delibes M (2003) Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. J Biogeogr 30:761–769

    CrossRef  Google Scholar 

  • Collier KJ, Halliday JN (2000) Macroinvertebrate-wood associations during decay of plantation pine in New Zealand pumice-bed streams: stable habitat or trophic subsidy? J North Am Benthol Soc 19:94–111

    CrossRef  Google Scholar 

  • Collins SM, Kohler TJ, Thomas SA et al (2016) The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. Oikos 125:674–685

    CrossRef  Google Scholar 

  • Colón-Gaud C, Whiles MR, Kilham SS et al (2009) Assessing ecological responses to catastrophic amphibian declines: Patterns of macroinvertebrate production and food web structure in upland Panamanian streams. Limnol Oceanogr 54(1):331–343

    CrossRef  Google Scholar 

  • Compin A, Cereghino R (2007) Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical variables and land-cover in Southwestern France. Landsc Ecol 22:1215–1225

    CrossRef  Google Scholar 

  • Correa SB, Winemiller KO, Lopez-Fernandez H, Galetti M (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience 57:748–756

    CrossRef  Google Scholar 

  • Crosskey RW (1990) The Natural History of Black Flies. Wiley, New York

    Google Scholar 

  • Cummins KW (2018) Functional analysis of stream macroinvertebrates. InTech Open. https://doi.org/10.5772/intechopen.79913

    CrossRef  Google Scholar 

  • Cummins KW (1973) Trophic relations of aquatic insects. Annu Rev Entomol 18:183–206

    CrossRef  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Ann Rev Ecol Syst 10:147–172

    CrossRef  Google Scholar 

  • Currie DC, Craig DA (1988) Feeding strategies of larval black flies. In: Kim KC, Merritt RW (eds) Black flies: ecology, population management and annotated world list. Pennsylvania State University, University Park, PA, pp 155–170

    Google Scholar 

  • Da Silva JC, Bialetzki A (2019) Early life history of fishes and zooplankton availability in a Neotropical floodplain: predator-prey functional relationships. J Plankton Res 41:63–75

    CrossRef  Google Scholar 

  • Dangles O (2002) Functional plasticity of benthic macroinvertebrates: Implications for trophic dynamics in acid streams. Can J Fish Aquat Sci 59:1563–1573

    CrossRef  Google Scholar 

  • de Carvalho TC, de Assis Montag LF, dos Santos-Costa MC (2017) Diet composition and foraging habitat use by three species of water snakes, Helicops Wagler, 1830, (Serpentes: Dipsadidae) in eastern Brazilian Amazonia. J Herpetol 51:215–222. https://doi.org/10.1670/15-161

    CrossRef  Google Scholar 

  • Delariva RL, Agostinho AA (2001) Relationship between morphology and diets of six neotropical loricariids. J Fish Biol 58:832–847. https://doi.org/10.1111/j.1095-8649.2001.tb00534.x

    CrossRef  Google Scholar 

  • Dobson M, Magana A, Mathooko JM, Ndegwa FK (2002) Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshw Biol 47:909–919. https://doi.org/10.1046/j.1365-2427.2002.00818.x

    CrossRef  Google Scholar 

  • Doucett RR, Marks JC, Blinn DW et al (2007) Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88:1587–1592

    PubMed  CrossRef  Google Scholar 

  • Douglas ME, Matthews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65:213. https://doi.org/10.2307/3545012

    CrossRef  Google Scholar 

  • Draulans D (1988) Effects of fish-eating birds on freshwater fish stocks: an evaluation. BiolConserv 44:251–263

    Google Scholar 

  • Edler C, Georgian T (2004) Field measurements of particle-capture efficiency and size selection by caddisfly nets and larvae. J North Am Benthol Soc 23:756–770. Doi: https://doi.org/10.1899/0887-3593(2004)023<0756:fmopea>2.0.co;2

    CrossRef  Google Scholar 

  • Elliott JM, Hurley MA (2000) Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshw Biol 44:237–245

    CrossRef  Google Scholar 

  • Evans-White MA, Dodds WK, Whiles MR (2003) Ecosystem significance of crayfishes and stonerollers in a prairie stream: functional differences between co-occurring omnivores. J North Am Benthol Soc 22:423–441. https://doi.org/10.2307/1468272

    CrossRef  Google Scholar 

  • Ferreira WR, Ligeiro R, Macedo DR et al (2015) Is the diet of a typical shredder related to the physical habitat of headwater streams in the Brazilian Cerrado ? 51:115–124. https://doi.org/10.1051/limn/2015004

  • Findlay S, Meyer JL, Smith PJ, Smith PJ (1984) Significance of bacterial biomass in the nutrition of a freshwater isopod (Lirceus sp.). Oecologia 63:38–42

    PubMed  CrossRef  Google Scholar 

  • Findlay S, Meyer JL, Snith PJ, Smith PJ (1986) Contribution of fungal biomass to the diet of a freshwater isopod (Lirceus sp.). Freshw Biol 16:377–385

    CrossRef  Google Scholar 

  • Finlay JC, Doucett RR, McNeely C (2010) Tracing energy flow in stream food webs using stable isotopes of hydrogen. Freshw Biol 55:941–951. https://doi.org/10.1111/j.1365-2427.2009.02327.x

    CAS  CrossRef  Google Scholar 

  • Fisher SG, Gray LJ (1983) Secondary production and organic matter processing by collector macroinvetebrates in a desert stream. Ecology 64:1217–1224

    CrossRef  Google Scholar 

  • Flecker AS (1992) Fish trophic guilds and the stucture of a tropical stream: weak direct versus strong indirect effects. Ecology 73:927-940 https://doi.org/10.2307/1940169

    Google Scholar 

  • Flecker AS, Feifarek BP, Taylor BW et al (1999) Ecosystem engineering by a tropical tadpole: density-dependent effects on habitat structure and larval growth rates. Copeia 1999:495–500

    CrossRef  Google Scholar 

  • Franken RJM, Waluto B, Peeters ETHM et al (2005) Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshw Biol 50:459–466. https://doi.org/10.1111/j.1365-2427.2005.01333.x

    CrossRef  Google Scholar 

  • Frederick PC, Siegel-Causey D (2000) Anhinga (Anhinga anhinga). In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY. https://doi.org/10.2173/bna.522

  • Frimpong EA, Angermeier PL (2010) Trait-based approaches in the analysis of stream fish communities. Am Fish Soc Symp 73:109–136

    Google Scholar 

  • Garrison BA (1999) Bank Swallow (Riparia riparia). In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY. https://doi.org/10.2173/bna.414

  • Gatz AJ (1979) Morphologically inferred niche differentiation in stream fishes. Am Midl Nat 106:10. https://doi.org/10.2307/2425131

    CrossRef  Google Scholar 

  • Gelwick FP, McIntyre PB (2017) Trophic relations of stream fishes. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, third. Elsevier Inc., New York, pp 457–479

    CrossRef  Google Scholar 

  • Gergs R, Steinberger N, Basen T, Martin-Creuzburg D (2014) Dietary supply with essential lipids affects growth and survival of the amphipod Gammarus roeselii. Limnologica 46:109–115. https://doi.org/10.1016/j.limno.2014.01.003

    CAS  CrossRef  Google Scholar 

  • Goldstein RM, Meador MR (2004) Comparisons of fish species traits from small streams to large rivers. Trans Am Fish Soc 133:971–983. https://doi.org/10.1577/t03-080.1

    CrossRef  Google Scholar 

  • Goulding M (1980) The fishes and the forest. Princeton University Press, Berkeley, CA

    CrossRef  Google Scholar 

  • Graca M, Maltby L, Calow P (1993) Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus II. Effects on growth, reproduction and physiology. Oecologia 96:304–309

    CAS  PubMed  CrossRef  Google Scholar 

  • Graca MAS, Cressa C, Gessner MO, et al. (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwat Biol 46:947–957

    Google Scholar 

  • Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams-a review. Int Rev Hydrobiol 86:383–393

    CrossRef  Google Scholar 

  • Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int Rev Hydrobiol 95:27–41. https://doi.org/10.1002/iroh.200911173

    CrossRef  Google Scholar 

  • Greathouse EA, Pringle CM (2006) Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream. 152:134–152. https://doi.org/10.1139/F05-201

    CAS  CrossRef  Google Scholar 

  • Gregory SV (1983) Plant-herbivore interactions in stream ecosystems. In: Barnes JR, Minshall G (eds) Stream Ecology. Plenum Press, New York, pp 157–190

    CrossRef  Google Scholar 

  • Grubaugh JW, Wallace JB, Houston ES (1996) Longitudinal changes of macroinvertebrate communiries along an appalachian stream continuum. Can J Fish Aquat Sci 909:896–909

    CrossRef  Google Scholar 

  • Guo F, Lunz WC, Kainz M et al (2016) The importance of high-quality algal food sources in stream food webs—current status and future perspectives. Freshw Biol 61:1411–1422. https://doi.org/10.1111/fwb.12755

    CAS  CrossRef  Google Scholar 

  • Hall RO, Meyer JL (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79:1995–2012

    CrossRef  Google Scholar 

  • Hawkins CP, Murphy ML, Anderson NH (1982) Effects of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in Cascade Range streams of Oregon. Ecology 63:1840–1856

    CrossRef  Google Scholar 

  • Hawkins CP, Sedell JR (1981) Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62:387–397

    CrossRef  Google Scholar 

  • Hecht KA, Nickerson MA, Colclough PB (2017) Hellbenders (Cryptobranchus alleganiensis) may exhibit an ontogenetic dietary shift. Southeast Nat 16:157–162. https://doi.org/10.1656/058.016.0204

    CrossRef  Google Scholar 

  • Hilderbrand GV, Hanley TA, Robbins CT, Schwartz CC (1999) Role of brown bears Ursus arctos in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121:546–560

    CAS  PubMed  CrossRef  Google Scholar 

  • Hill WR, Knight AW (1988) Grazing effects of two stream insects on periphyton. Limnologica 33:15–26

    CrossRef  Google Scholar 

  • Hofmeister NR, Welk M, Freedberg S (2013) Elevated levels of δ15 N in riverine Painted Turtles (Chrysemys picta): trophic enrichment or anthropogenic input? Can J Zool 91:899–905. https://doi.org/10.1139/cjz-2013-0121

    CAS  CrossRef  Google Scholar 

  • Horwitz RJ (1978) Temporal variability patterns and the distributional patterns of stream fishes. Ecol Monogr 48:307–321. https://doi.org/10.2307/2937233

    CrossRef  Google Scholar 

  • Hynes H (1970) The ecology of running waters. University of Toronto Press, Toronto

    Google Scholar 

  • Ibañez C, Belliard J, Hughes RM et al (2009) Convergence of temperate and tropical stream fish assemblages. Ecography (Cop) 32:658–670. https://doi.org/10.1111/j.1600-0587.2008.05591.x

    CrossRef  Google Scholar 

  • Ibañez C, Tedesco PA, Bigorne R et al (2007) Dietary-morphological relationships in fish assemblages of small forested streams in the Bolivian Amazon. Aquat Living Resour 20:131–142. https://doi.org/10.1051/alr:2007024

    CrossRef  Google Scholar 

  • Jensen H, Kiljunen M, Amundsen PA (2012) Dietary ontogeny and niche shift to piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable isotope analyses. J Fish Biol 80:2448–2462. https://doi.org/10.1111/j.1095-8649.2012.03294.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Karachle PK, Stergiou KI (2010) Intestine morphometrics of fishes: a compilation and analysis of bibliographic data. Acta Ichthyol Piscat 40:45–54. https://doi.org/10.3750/AIP2010.40.1.06

    CrossRef  Google Scholar 

  • Kaushik NK, Hynes HBN (1971) The fate of autumn-shed leaves that fall into streams. Arch für Hydrobiol 68:465–515

    Google Scholar 

  • Keast A (1978) Feeding interrelations between age groups of pumpkinseed (Lepomis gibbosus) and comparisons with Bluegill (L. macrochirus). J Fish Res Board Canada 35:12–27

    CrossRef  Google Scholar 

  • Kelly JF, Bridge ES, Hamas MJ (2009) Belted Kingfisher (Megaceryle alcyon). In: Poole AF (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY https://doi.org/10.2173/bna.84

  • Kingery HE, Willson MF (2019) American Dipper (Cinclus mexicanus). In: Rodewald PG (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY https://doi.org/10.2173/bna.amedip.03

  • Kochi K, Kagaya T (2005) Green leaves enhance the growth and development of a stream macroinvertebrate shredder when senescent leaves are available. Freshw Biol 50:656–667. https://doi.org/10.1111/j.1365-2427.2005.01353.x

    CrossRef  Google Scholar 

  • Lacoursiere JO, Craig DA (1993) Fluid transmission and filtartion efficiency of the labral fans of black fly larvae (Diptera: Simuliidae): hydrodynamic, morphological, and behavioural aspects. Can J Zool 71:148–162

    CrossRef  Google Scholar 

  • Lamberti GA, Ashkenas LR, Gregory SV, Steinman AD (1987) Effects of three herbivores on periphyton communities in laboratory streams. J North Am Benthol Soc 6:92–104

    CrossRef  Google Scholar 

  • Lamberti GA, Moore JW (1984) Aquatic insects as primary consumers. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 164–195

    Google Scholar 

  • Lamberti GA, Resh V (1983) Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64:1124–1135

    CrossRef  Google Scholar 

  • Lancaster J, Bradley DC, Hogan A, Waldron S (2005) Intraguild omnivory in predatory stream insects. J Anim Ecol 74:619–629. https://doi.org/10.1111/j.1365-2656.2005.00957.x

  • Lang HH (1980) Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246

    CrossRef  Google Scholar 

  • Lara NRF, Marques TS, Montelo KM et al (2012) A trophic study of the sympatric Amazonian freshwater turtles Podocnemis unifilis and Podocnemis expansa (testudines, podocnemidae) using carbon and nitrogen stable isotope analyses. Can J Zool 90:1394–1401. https://doi.org/10.1139/cjz-2012-0143

    CAS  CrossRef  Google Scholar 

  • Lau DCP, Leung KMY, Dudgeon D (2009) Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? J North Am Benthol 28:426–439. https://doi.org/10.1899/07-079.1

    CrossRef  Google Scholar 

  • Lauder GV (1980) The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J Exp Biol 88:49–72

    Google Scholar 

  • Layman CA, Winemiller KO, Arrington DA, Jepsen DB (2005) Body size and trophic position in a diverse tropical food web. Ecology 86:2530–2535

    CrossRef  Google Scholar 

  • Levine JS, MacNichol EF (1979) Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. Sens Processes 3:95–131

    CAS  PubMed  Google Scholar 

  • Li AOY, Dudgeon D (2008) Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshw Biol 53:2011–2025. https://doi.org/10.1111/j.1365-2427.2008.02022.x

    CrossRef  Google Scholar 

  • Liem KF (1980) Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Am Zool 20:295–314

    CrossRef  Google Scholar 

  • Lind AJ, Welsh HH (1994) Ontogenetic changes in foraging behaviour and habitat use by the Oregon garter snake, Thamnophis atratus hydrophilus. Anim Behav 48:1261–1273

    CrossRef  Google Scholar 

  • Loch C, Marmontel M, Simões-Lopes PC (2009) Conflicts with fisheries and intentional killing of freshwater dolphins (Cetacea: Odontoceti) in the Western Brazilian Amazon. Biodivers Conserv 18:3979–3988. https://doi.org/10.1007/s10531-009-9693-4

    CrossRef  Google Scholar 

  • Logez M, Bady P, Melcher A, Pont D (2013) A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography (Cop) 36:80–91. https://doi.org/10.1111/j.1600-0587.2012.07447.x

    CrossRef  Google Scholar 

  • Lowe-McConnell R (1987) Ecological studies in tropical fish communities. Cambridge University Press, London

    CrossRef  Google Scholar 

  • Luiselli L, Capizzi D, Filippi E et al (2007) Comparative diets of three populations of an aquatic snake (Natrix tessellata, Colubridae) from Mediterranean streams with different hydric regimes. Copeia 426–435. https://doi.org/10.1643/0045-8511

  • Lundberg JG, Lewis WM, Saunders JF, Mago F (1987) A major food web component in the Orinoco River channel: Evidence from planktivorous electric fishes. Science (80-) 237:81–83

    Google Scholar 

  • Lundquist MJ, Zhu W (2018) Aquatic insect functional diversity and nutrient content in urban streams in a medium-sized city. Ecosphere 9:1–11

    CrossRef  Google Scholar 

  • MacNeil BC, Dick JTA, Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea:Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol Rev 72:349–364

    CrossRef  Google Scholar 

  • Marchant R, Metzeling L, Graesser A, Suter P (1985) The organization of macroinvertebrate communities in the major tributaries of the LaTrobe River, Victoria, Australia. Freshw Biol 15:315–331

    CrossRef  Google Scholar 

  • Martin M, Kukor J (1984) Role of micophagy and bacteriophagy in invertebrate nutrition. In: Klug M, Reddy C (eds) Current perspectives in microbial ecology. American Society of Microbiology, Washington, DC, pp 257–263

    Google Scholar 

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Kluwer Academic Publishers

    Google Scholar 

  • McCullough DA, Minshall GW, Cushing CE (1979) Bioenergetics of a stream “collector” organism, Tricorythodes minutus (Insecta: Ephemeroptera). Limnol Oceanogr 24:45–58

    CrossRef  Google Scholar 

  • McNeely C, Clinton SM, Erbe JM (2006) Landscape variation in C sources of scraping primary concsumers in streams. J North Am Benthol Soc 25:787–799. https://doi.org/10.1899/0887-3593(2006)025

    CrossRef  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2019) Aquatic Insects of North America, 5th edn. Kendall/Hunt, Dubuque Iowa

    Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2017) Trophic relationships of macroinvertebrates. In: Hauer FR, Lamberti GA (eds) Methods in Stream Ecology, Third. Elsevier Inc., New York, pp 413–433

    CrossRef  Google Scholar 

  • Merritt RW, Ross DH, Larson GJ (1982) Influence of stream temperature and seston on the growth and production of overwintering larval black flies (Simuliidae, Diptera). Ecology 63:1322–1331

    CrossRef  Google Scholar 

  • Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371. https://doi.org/10.5194/bg-11-2357-2014

    CrossRef  Google Scholar 

  • Mihuc TB (1997) The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshw Biol 37:455–462

    CrossRef  Google Scholar 

  • Minshall GW (1978) Autotrophy in stream ecosystems. Bioscience 28:767–771

    CrossRef  Google Scholar 

  • Miranda LE, Granzotti RV, Dembkowski DJ (2019) Gradients in fish feeding guilds along a reservoir cascade. Aquat Sci 81:15. https://doi.org/10.1007/s00027-018-0615-y

  • Mittelbach G, Persson L (1998) The ontogeny of piscivory and its ecological consequences. Can J Fish Aquat Sci 55:1454–1465. https://doi.org/10.1139/cjfas-55-6-1454

    CrossRef  Google Scholar 

  • Moll D (1976) Food and feeding strategies of the Ouachita map turtle (Graptemys pseudogeographica). Am Midl Nat 96:478–482

    CrossRef  Google Scholar 

  • Moore AA, Palmer MA (2005) Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol Appl 15:1169–1177

    CrossRef  Google Scholar 

  • Moore JW (1975) The role of algae in the diet of Asellus aquaticus. J Anim Ecol 44:719–730

    CrossRef  Google Scholar 

  • Mortillaro JM, Pouilly M, Wach M et al (2015) Trophic opportunism of central Amazon floodplain fish. Freshw Biol 60:1659–1670. https://doi.org/10.1111/fwb.12598

    CAS  CrossRef  Google Scholar 

  • Muntz WR (1982) Visual adaptations to different light environments in Amazonian fishes. Rev Can Biol Exp 41:35–46

    CAS  PubMed  Google Scholar 

  • Newman RM (1991) Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J North Am Benthol Soc 10:89–114

    CrossRef  Google Scholar 

  • Nichols SJ, Garling D (2000) Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids. Can J Zool 78:871–882

    CrossRef  Google Scholar 

  • Ormerod SJ (1985) The diet of breeding Dippers Cinclus cinclus and their nestlings in the catchment of the River Wye, mid-Wales: a preliminary study by faecal analysis. Ibis (Lond 1859) 127:316–331

    Google Scholar 

  • Palmer RW, Craig DA (2000) An ecological classification of primary labral fans of filter-feeding black fly (Diptera: Simuliidae) larvae. Can J Zool 78:199–218

    CrossRef  Google Scholar 

  • Pandian TJ, Peter M (1986) An indirect procedure for the estimation of assimilation efficiency of aquatic insects. Fresh water Biol 16:93–98

    CrossRef  Google Scholar 

  • Patrick CJ (2013) The effect of shredder community composition on the production and quality of fine particulate organic matter. Freshw Sci 32:1026–1035. https://doi.org/10.1899/12-090.1

    CrossRef  Google Scholar 

  • Pearce J, Mallory ML, Metz K (2015) Common Merganser (Mergus merganser). In: Poole AF (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY

    Google Scholar 

  • Peckarsky BL (1984) Predator-prey interactions among aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 196–254

    Google Scholar 

  • Petranka JW (1984) Sources of interpopulational variation in growth responses of larval salamanders. Ecology 65:1857–1865

    CrossRef  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    CrossRef  Google Scholar 

  • Pouilly M, Barrera S, Rosales DCAN (2006) Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia). J Fish 68:137–156. https://doi.org/10.1111/j.1095-8649.2005.00883.x

    CrossRef  Google Scholar 

  • Pouilly M, Lino F, Bretenoux JG, Rosales C (2003) Dietary-morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. J Fish Biol 62:1137–1158. https://doi.org/10.1046/j.1095-8649.2003.00108.x

    CrossRef  Google Scholar 

  • Power ME (1983) Grazing responses of tropical freshwater fishes to different scales of variation in their food. Environ Biol Fishes 9:103–115

    CrossRef  Google Scholar 

  • Power ME (1984) Depth Distributions of armored catfish: Predator-induced resource avoidance? Ecology 65:523–528

    CrossRef  Google Scholar 

  • Power ME, Matthews WJ, Stewart AJ (1985) Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66:1448–1456

    CrossRef  Google Scholar 

  • Proctor HC, Pritchard G (1990) Prey detection by the water mite Unionicola crassipes (Acarai: Unionicolidae). Freshw Biol 23:271–279

    CrossRef  Google Scholar 

  • Raikow DF, Hamilton SK, Kellogg WK (2001) Bivalve diets in a midwestern U.S. stream: A stable isotope enrichment study. Limnol Ocean 46:514–522

    CrossRef  Google Scholar 

  • Ramírez F, Davenport TL, Mojica JI (2015) Dietary-morphological relationships of nineteen fish species from an Amazonian terra firme blackwater stream in Colombia. Limnologica 52:89–102. https://doi.org/10.1016/j.limno.2015.04.002

    CrossRef  Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2004) Visual and mechanical cues used for prey detection by the larva of Libellula depressa (Odonata Libellulidae). Ethol Ecol Evol 16:133–144. https://doi.org/10.1080/08927014.2004.9522642

    CrossRef  Google Scholar 

  • Roditi HA, Camco NF, Cole JJ, Strayer DL (1996) Filtration of Hudson River water by the Zebra Mussel (Dreissena polymorpha). Estuaries 19:824–832

    CrossRef  Google Scholar 

  • Rodríguez MA, Lewis WM (1997) Structure of fish assemblages along environmental gradients of floodplain lakes in the Orinoco River. Ecol Monogr 67:109–128

    CrossRef  Google Scholar 

  • Rosenblatt AE, Nifong JC, Heithaus MR et al (2015) Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178:5–16. https://doi.org/10.1007/s00442-014-3201-6

    CrossRef  PubMed  Google Scholar 

  • Rosi-Marshall EJ, Wallace JB (2002) Invertebrate food webs along a stream resource gradient. Freshw Biol 47:129–141

    CrossRef  Google Scholar 

  • Sampson SJ, Chick JH, Pegg MA (2009) Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol Invasions 11:483–496. https://doi.org/10.1007/s10530-008-9265-7

    CrossRef  Google Scholar 

  • Santana SE, Cheung E (2016) Go big or go fish: morphological specializations in carnivorous bats. Proc R Soc B Biol Sci 283:283:20160615. https://doi.org/10.1098/rspb.2016.0615

  • Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: Implications for food web and experimental ecology. Freshw Biol 54:572–586. https://doi.org/10.1111/j.1365-2427.2008.02134.x

    CrossRef  Google Scholar 

  • Schlosser IJ (1987) The role of predation in age-and size-related habitat use by stream fishes. Ecology 68:651–659

    CrossRef  Google Scholar 

  • Schnitzler HU, Kalko EK, Kaipf I, Grinell AD (1994) Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behav Ecol Sociobiol 35:327–345

    CrossRef  Google Scholar 

  • Sinsabaugh RL, Linkins AE, Benfield EF, Benfield EF (1985) Cellulose digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66:1464–1471

    CAS  CrossRef  Google Scholar 

  • Sjostrom O (1985) Hunting behaviour of the perlid stonefly nymph Dinocras cephalotes (Plecoptera) under different light conditions. Anim Behav 33:534–540

    CrossRef  Google Scholar 

  • Smith RF, Lamp WO (2008) Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. J North Am Benthol Soc 27:161–175. https://doi.org/10.1899/07-071.1

    CrossRef  Google Scholar 

  • Steedman RJ, Anderson NH (1985) Life history and ecological role of the xylophagous aquatic beetle, Lara avara LeConte (Dryopoidea: Elmidae). Freshw Biol 15:535–546

    CrossRef  Google Scholar 

  • Steinman AD, Mcintire D, Lowry RR (1987) Effects of herbivore type and density on chemical composition of algal assemblages in. J North Am Benthol Soc 6:189–197

    CrossRef  Google Scholar 

  • Steinmetz J, Kohler SL, Soluk DA (2003) Birds are overlooked top predators in aquatic food webs. Ecology 84:1324–1328

    CrossRef  Google Scholar 

  • Stepenuck KF, Crunkilton RL, Wang L (2002) Impacts of urban landuse on macroinvertebrate communities in southeastern Wisconsin streams. J Am Water Resour Assoc 38:1041–1051

    CrossRef  Google Scholar 

  • Sterling JL, Rosemond AD, Wenger SJ (2016) Watershed urbanization affects macroinvertebrate community structure and reduces biomass through similar pathways in Piedmont streams, Georgia, USA. Freshw Sci 35:676–688. https://doi.org/10.1086/686614

    CrossRef  Google Scholar 

  • Strategies F, Townsend CR, Hildrew AG (1979) Resource partitioning by two freshwater invertebrate predators with contrasting foraging strategies. J Anim Ecol 48:909–920

    CrossRef  Google Scholar 

  • Strayer DL (1999) Effects of alien species on freshwater mollusks in North America. J North Am Benthol Soc 18:74–98

    CrossRef  Google Scholar 

  • Suberkropp K, Arsuffi TL (1984) Degradation, growth, and changes in palatability of leaves colonized by six aquatic hyphomycetes: interspecific differences and influence on shredder feeding preferences. Mycologia 76:398–407

    CrossRef  Google Scholar 

  • Tachet H (1977) Vibrations and predatory behavior of Plectronemia conspersa larvae (Trichoptera). Zeitschrift fur Tierpsycholgie 45:61–74

    CAS  CrossRef  Google Scholar 

  • Thompson BC, Jackson JA, Burger J et al (2011) Least Tern (Sternula antillarum). In: Poole A, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY

    Google Scholar 

  • Tipping PW, Martin MR, Center TD, Davern TM (2008) Suppression of Salvinia molesta Mitchell in Texas and Louisiana by Cyrtobagous salviniae Calder and Sands. Aquat Bot 88:196–202. https://doi.org/10.1016/j.aquabot.2007.10.010

    CrossRef  Google Scholar 

  • Tucker AD, Guarino F, Priest TE (2011) Where lakes were once rivers: contrasts of freshwater turtle diets in dams and rivers of Southeastern Queensland. Chelonian Conserv Biol 11:12–21

    CrossRef  Google Scholar 

  • Vadeboncoeur Y, Power ME (2017) Attached algae: the cryptic base of inverted trophic pyramids in freshwaters. Annu Rev Ecol Evol Syst 48:255–279

    CrossRef  Google Scholar 

  • Vennesland RG, Butler RW (2011) Great Blue Heron (Ardea herodias). In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY

    Google Scholar 

  • Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fishes 44:97–113. https://doi.org/10.1007/BF00005909

    CrossRef  Google Scholar 

  • Wallace JB, Malas D (1976) The fine structuure of capture nets of larval Philopotamidae (Trichoptera) with special emphasis on Dolophilodes distinctus. Can J Zool 54:178801802

    CrossRef  Google Scholar 

  • Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Ann Rev Entomol 25:103–135

    CrossRef  Google Scholar 

  • Wallace JB, O’Hop J (1985) Life on a fast pad: waterlily leaf beetle impact on water lilies. Ecol 66:1534–1544

    CrossRef  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW et al (2005) The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24:706–723. https://doi.org/10.1899/04-028.1

    CrossRef  Google Scholar 

  • Wantzen KM, Wagner R (2006) Detritus processing by shredders: a tropical-temperate comparison. J North Am Benthol Soc 25:216–232. https://doi.org/10.1899/0887-3593(2006)25

    CrossRef  Google Scholar 

  • Wantzen KM, Wagner R, Suetfeld R, Junk WJ (2002) How do plant-herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Verhandlungen der Int Vereinigung für Theor und Angew Limnol 28:815–821. https://doi.org/10.1080/03680770.2001.11901827

    CrossRef  Google Scholar 

  • Ward-Campbell BMS, Beamish FWH, Kongchaiya C (2005) Morphological characteristics in relation to diet in five coexisting Thai fish species. J Fish Biol 67:1266–1279. https://doi.org/10.1111/j.1095-8649.2005.00821.x

    CrossRef  Google Scholar 

  • Ward GM, Woods DR (1986) Lignin and fiber content of FPOM generated by the shredders Tipula abdominalis (Diptra: Tipulidae) and Taloperla cornelia Needham & Smith (Plecoptera: Peltoperlidae). Arch fur Hydrobiol 107:545–562

    CAS  Google Scholar 

  • Weiperth A, Gaebele T, Potyó I, Puky M (2014) A global overview on the diet of the dice snake (Natrix tessellata) from a geographical perspective: foraging in atypical habitats and feeding spectrum widening helps colonisation and survival under suboptimal conditions for a piscivorous snake. Zool Stud 53. https://doi.org/10.1186/s40555-014-0042-2

  • Welcomme RL (1979) Fisheries Ecology of Floodplain Rivers. Longman, London

    Google Scholar 

  • Wetzel RG (2001) Limnology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Whiles MR, Gladyshev MI, Sushchik NN et al (2010) Fatty acid analyses reveal high degrees of omnivory and dietary plasticity in pond-dwelling tadpoles. Freshw Biol 55:1533–1547. https://doi.org/10.1111/j.1365-2427.2009.02364.x

    CAS  CrossRef  Google Scholar 

  • Wiggins GB, Mackay RJ (1978) Some relationships between systematics and trophic ecology in Nearctic aquatic insects, with special reference to Trichoptera. Ecology 59:1211–1220

    CrossRef  Google Scholar 

  • Willson MF, Halupka KC (1995) Anadromous fish as keystone species in vertebrate communities. Conserv Biol 9:489–497

    CrossRef  Google Scholar 

  • Winemiller KO (2004) Floodplain river food webs: generalizations and implications for fisheries management. In: Welcomme RL, Petr T (eds) Proceedings of the second international symposium on the management of large rivers for fisheries, vol 2. FAO and the Mekong River Commission, pp 285–307

    Google Scholar 

  • Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Indic 61:343–365

    Google Scholar 

  • Wolff LL, Carniatto N, Hahn NS (2013) Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil. Neotrop Ichthyol 11:375–386. https://doi.org/10.1590/S1679-62252013005000005

    CrossRef  Google Scholar 

  • Wood KA, Hare MTO, Mcdonald C et al (2017) Herbivore regulation of plant abundance in aquatic ecosystems. Biol Rev 92:1128–1141. https://doi.org/10.1111/brv.12272

    CrossRef  Google Scholar 

  • Wootton JT, Oemke MP (1992) Latitudinal differences in fish community trophic structure, and the role of fish herbivory in a Costa Rican stream. Environ Biol Fishes 35:311–319. https://doi.org/10.1007/BF00001899

    CrossRef  Google Scholar 

  • Wotton RS (1994) Particulate and dissolved organic matter as food. In: Wotton RS (ed) The biology of particles in aquatic Systems. Lewis, Boca Raton, FL, pp 235–288

    Google Scholar 

  • Wotton RS, Malmqvist B (2001) Feces in aquatic ecosystems. Bioscience 51:537–544

    CrossRef  Google Scholar 

  • Wotton RS, Malmqvist B, Muotka T, Larsson K (1998) Fecal pellets from a dense aggregations of suspension feeders in a stream: An example of ecosystem engineering. Limnol Oceanogr 43:719–725

    CrossRef  Google Scholar 

  • Wright MS, Covich AP (2005) The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica 37:403–408. https://doi.org/10.1111/j.1744-7429.2005.00053.x

    CrossRef  Google Scholar 

  • Zimmer M, Bartholmé S (2003) Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol Ocean 48:2208–2213

    CrossRef  Google Scholar 

  • Zimmerman MC, Wissing TE (1978) Effects of temperature on gut-loading and gut-clearing times of the burrowing mayfly, Hexagenia limbata. Freshw Biol 8:269–277

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Allan .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Allan, J.D., Castillo, M.M., Capps, K.A. (2021). Trophic Relationships. In: Stream Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-61286-3_9

Download citation