Skip to main content

Detrital Energy and the Decomposition of Organic Matter

  • 900 Accesses

Abstract

The decomposition of organic carbon provides key energy inputs to most food webs, and this is especially true in fluvial ecosystems. These energy pathways are referred to as detrital or detritus-based, and the immediate consumers of this material are decomposers and detritivores.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61286-3_7
  • Chapter length: 48 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-61286-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 7.1

(Modified from Subalusky and Post 2019)

Fig. 7.2

(Reproduced from Minshall 1996)

Fig. 7.3

(Reproduced from Benfield 1997)

Fig. 7.4

(Reproduced from Dalu et al. 2016)

Fig. 7.5

(Reproduced from Wild et al. 2019)

Fig. 7.6

(Reproduced from Wallace et al. 1995)

Fig. 7.7

Photo by Carolyn Cummins

Fig. 7.8
Fig. 7.9

(Reproduced from Hieber and Gessner 2002)

Fig. 7.10

(Modified from Graca et al. 2015)

Fig. 7.11

(Reproduced from Webster and Benfield 1986)

Fig. 7.12

(Reproduced from Leroy and Marks 2006)

Fig. 7.13

(Reproduced from Wallace et al. 2008)

Fig. 7.14

(Reproduced from Gulis and Suberkropp 2003)

Fig. 7.15

(Reproduced from Hieber and Gessner 2002)

Fig. 7.16

(Reproduced from Findlay et al. 2002)

Fig. 7.17

(Reproduced from Gulis et al. 2004)

Fig. 7.18

(Reproduced from Sponseller and Benfield 2001)

Fig. 7.19

(Reproduced from Wallace et al. 2015)

Fig. 7.20

(Reproduced from Venarsky et al. 2018)

Fig. 7.21

(Reproduced from Bilby and Likens 1979)

Fig. 7.22

(Reproduced from Webster et al. 1999)

Fig. 7.23

(Modified from data presented in Farrell et al. 2018)

Fig. 7.24

(Reproduced from Gergel et al. 1999)

Fig. 7.25

(Reproduced from Parr et al. 2015)

Fig. 7.26

(Reproduced from Reiman and Xu 2019)

References

  • Abelho M, Cressa C, Graça MA (2005) Microbial Biomass, Respiration, and Decomposition of Hura crepitans L. (Euphorbiaceae) Leaves in a Tropical Stream. Biotropica 37:397–402

    Google Scholar 

  • Abelho M, Descals EJ (2019) Litter movement pathways across terrestrial–aquatic ecosystem boundaries affect litter colonization and decomposition in streams. Ecology 33:1785–1797

    Google Scholar 

  • Adams JL, Tipping E, Feuchtmayr H et al (2018) The contribution of algae to freshwater dissolved organic matter: implications for UV spectroscopic analysis. Inland Waters 8:10–21

    CAS  CrossRef  Google Scholar 

  • Aitkenhead-Peterson JA, McDowell WH, Neff JC (2003) Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. Findlay SEG. Sinsabaugh RL. Aquatic Ecosystems. Elsevier, Amsterdam, pp 25–70

    Google Scholar 

  • Aitkenhead J, Hope D, Billett M (1999) The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrol Process 13:1289–1302

    CrossRef  Google Scholar 

  • Amani M, Graça MA, Ferreira V (2019) Effects of elevated atmospheric CO2 concentration and temperature on litter decomposition in streams: a meta-analysis. Int Rev Hydrobiol 104:14–25

    CAS  CrossRef  Google Scholar 

  • Anderson NH, Sedell JR (1979) Detritus processing by macroinvertebrates in stream ecosystems. An Rev Ento 24:351–377

    CrossRef  Google Scholar 

  • Anderson NH, Sedell JR, Roberts LM et al (1978) The role of aquatic invertebrates in processing of wood debris in coniferous forest streams. Amer Mid Nat 1974:64–82

    CrossRef  Google Scholar 

  • Arsuffi T, Suberkropp K (1986) Growth of two stream caddisflies (Trichoptera) on leaves colonized by different fungal species. J N Am Benthol Soc 5:297–305

    CrossRef  Google Scholar 

  • Arsuffi TL, Suberkropp K (1984) Leaf processing capabilities of aquatic hyphomycetes-interspecific differences and influence on shredder feeding preferences. Oikos 42:144–154. https://doi.org/10.2307/3544786

    CrossRef  Google Scholar 

  • Arsuffi TL, Suberkropp K (1985) Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches. Oikos 50–58

    Google Scholar 

  • Artmann U, Waringer JA, Schagerl M (2003) Seasonal dynamics of algal biomass and allochthonous input of coarse particulate organic matter in a low-order sandstone stream (Weidlingbach, Lower Austria). Limnologica 33:77–91

    CrossRef  Google Scholar 

  • ASCE (2011) Failure to act: The economic impact of current investment trends in water and wastewater treatment infrastructure. American Societity of Civil Engineers Press, Washington, D.C

    Google Scholar 

  • ASCE (2017) America’s infrastructure report card. American Society of Civil Engineers. https://www.infrastructurereportcard.org/. Accessed 03 September 2019 2019

  • Atkinson CL, Capps KA, Rugenski AT et al (2017) Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biol Rev 92:2003–2023. https://doi.org/10.1111/brv.12318

    CrossRef  PubMed  Google Scholar 

  • Bärlocher F (1982) Conidium production from leaves and needles in four streams. Can J Bot 60:1487–1494

    CrossRef  Google Scholar 

  • Bärlocher F (1983) Seasonal variation of standing crop and digestibility of CPOM in a Swiss Jura stream. Ecology 64:1266–1272

    CrossRef  Google Scholar 

  • Bärlocher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91:83–94

    CrossRef  Google Scholar 

  • Barlocher F, Kendrick B (1974) Dynamics of fungal population on leaves in a stream. J Ecol 62:761–791. https://doi.org/10.2307/2258954

    CrossRef  Google Scholar 

  • Bärlocher F, Kendrick B (1973) Fungi and food preferences of Gammarus pseudolimnaeus. Arch Hydrobiol 72:501–516

    Google Scholar 

  • Bärlocher F, Oertli J (1978) Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia 70:964–974

    CrossRef  Google Scholar 

  • Batista D, Pascoal C, Cassio E (2012) Impacts of warming on aquatic decomposers along a gradient of cadmium stress. Environ Pollut 169:35–41. https://doi.org/10.1016/j.envpol.2012.05.021

    CAS  CrossRef  PubMed  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM et al (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microb 14:251

    CAS  CrossRef  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA et al (2009) The boundless carbon cycle. Nat Geosci 2:598

    CAS  CrossRef  Google Scholar 

  • Benfield E (1997) Comparison of litterfall input to streams. J N Am Benthol Soc 16:104–108

    CrossRef  Google Scholar 

  • Benfield E, Webster J, Tank J et al (2001) Long-term patterns in leaf breakdown in streams in response to watershed logging. Int Rev Hydrobio 86:467–474

    CrossRef  Google Scholar 

  • Benfield EF, Fritz KM, Tiegs SD (2017) Chapter 27—Leaf-litter breakdown. In: Lamberti GA, Hauer, FR. Methods in Stream Ecology (Third Edition). Academic Press, Amsterdam pp 71–82. https://doi.org/10.1016/B978-0-12-813047-6.00005-X

  • Bengtsson MM, Attermeyer K, Catalan N (2018) Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems? Hydrobiologia 822:1–17. https://doi.org/10.1007/s10750-018-3672-2

    CAS  CrossRef  Google Scholar 

  • Benke A, Wallace JB (2010) Influence of wood on invertebrate communities in streams and rivers. In: Gregory SV, Boyer KL, Gurnell AM (eds), The ecology and management of wood in world rivers. American Fisheries Society, Symposium 37: Bethesda, Maryland, pp 149–177

    Google Scholar 

  • Benner R (2003) Molecular indicators of the bioavailability of dissolved organic matter. Findlay SEG. Sinsabaugh RL. Aquatic Ecosystems. Elsevier, Amsterdam, pp 121–137

    Google Scholar 

  • Berrie A (1972) The occurrence and composition of seston in the River Thames and the role of detritus as an energy source for secondary production in the river. In: Melchiorri-Santolini U, Hopton JW (eds) Detritus and its role in aquatic ecosystems. Springer, New York, pp 473–483

    Google Scholar 

  • Bertilsson S, Jones JB (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. Findlay SEG. Sinsabaugh RL. Aquatic Ecosystems. Elsevier, Amsterdam, pp 3–24

    Google Scholar 

  • Bianchi TS, Wysocki LA, Stewart M et al (2007) Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochim Cosmochim Acta 71:4425–4437. https://doi.org/10.1016/j.gca.2007.07.011

    CAS  CrossRef  Google Scholar 

  • Bilby RE (1981) Role of organic debris dams in regulating the export of dissolved and particulate matter from a forested watershed. Ecology 62:1234–1243

    CAS  CrossRef  Google Scholar 

  • Bilby RE, Likens GE (1979) Effect of hydrologic fluctuations on the transport of fine particulate organic carbon in a small stream 1. Limnol Oceanog 24:69–75

    CrossRef  Google Scholar 

  • Bilby RE, Likens GE (1980) Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61:1107–1113

    CrossRef  Google Scholar 

  • Bixby RJ, Cooper SD, Gresswell RE et al (2015) Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshw Sci 34:1340–1350. https://doi.org/10.1086/684073

    CrossRef  Google Scholar 

  • Bonin H, Griffiths R, Caldwell B (2003) Nutrient and microbiological characteristics of fine benthic organic matter in sediment settling ponds. Freshw Biol 48:1117–1126

    CrossRef  Google Scholar 

  • Bott T, Brock J, Dunn C et al (1985) Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123:3–45

    CrossRef  Google Scholar 

  • Bott TL, Kaplan LA, Kuserk FT (1984) Benthic bacterial biomass supported by streamwater dissolved organic matter. Microb Ecol 10:335–344

    CAS  PubMed  CrossRef  Google Scholar 

  • Boyero L, Graça MA, Tonin AM et al (2017) Riparian plant litter quality increases with latitude. Sci Repor 7:1–10

    CAS  CrossRef  Google Scholar 

  • Boyero L, Pearson RG, Dudgeon D et al (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob Ecol Biogeog 21:134–141. https://doi.org/10.1111/j.1466-8238.2011.00673.x

    CrossRef  Google Scholar 

  • Boyero L, Pearson RG, Hui C et al (2016) Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc R Soci B 283:20152664

    CrossRef  CAS  Google Scholar 

  • Bundschuh M, McKie BG (2016) An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshw Biol 61:2063–2074. https://doi.org/10.1111/fwb.12608

    CAS  CrossRef  Google Scholar 

  • Burrows RM, Rutlidge H, Bond NR et al (2017) High rates of organic carbon processing in the hyporheic zone of intermittent streams. Sci Repo 7:13198

    CrossRef  CAS  Google Scholar 

  • Camacho R, Boyero L, Cornejo A et al (2009) Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41:625–632. https://doi.org/10.1111/j.1744-7429.2009.00519.x

    CrossRef  Google Scholar 

  • Canham CD, Pace ML, Papaik MJ et al (2004) A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol Appl 14:839–854

    CrossRef  Google Scholar 

  • Canhoto C, Simões S, Gonçalves AL et al (2017) Stream salinization and fungal-mediated leaf decomposition: a microcosm study. Sci Tot Envi 599:1638–1645

    CrossRef  CAS  Google Scholar 

  • Capps KA (2019) Wastewater infrastructure and the ecology and management of freshwater systems. Acta Limnologica Brasiliensia 31

    Google Scholar 

  • Cargill A, Cummins K, Hanson B et al (1985a) The role of lipids as feeding stimulants for shredding aquatic insects. Freshw Biol 15:455–464

    CAS  CrossRef  Google Scholar 

  • Cargill AS, Cummins KW, Hanson BJ et al (1985b) The role of lipids, fungi, and temperature in the nutrition of a shredder caddisfly, Clistoronia magnifica. Freshw Invert Biol 4:64–78

    CrossRef  Google Scholar 

  • Carlisle DM, Clements WH (2005) Leaf litter breakdown, microbial respiration and shredder production in metal‐polluted streams. Freshw Bio 50:380–390

    Google Scholar 

  • Carvalho F, Pascoal C, Cássio F et al (2016) Direct and indirect effects of an invasive omnivore crayfish on leaf litter decomposition. Sci Tot Environ 541:714–720. https://doi.org/10.1016/j.scitotenv.2015.09.125

    CAS  CrossRef  Google Scholar 

  • Catalán N, Casas-Ruiz JP, Arce MI et al (2018) Behind the scenes: mechanisms regulating climatic patterns of dissolved organic carbon uptake in headwater streams. Glob Biogeochem Cyc 32:1528–1541

    CrossRef  CAS  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM et al (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491

    CAS  CrossRef  Google Scholar 

  • Chará-Serna AM, Chara JD, del Carmen Zúñiga M et al. Diets of leaf litter-associated invertebrates in three tropical streams. In: Annales de Limnologie-International Journal of Limnology, 2012. vol 2. EDP Sciences, pp 139–144

    Google Scholar 

  • Chaves-Ulloa R, Taylor BW, Broadley HJ et al (2016) Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers. Ecol Appl 26:1771–1784

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cheever B, Webster J, Bilger E et al (2013) The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94:1614–1625

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen S, Lu YH, Dash P et al (2019) Hurricane pulses: Small watershed exports of dissolved nutrients and organic matter during large storms in the Southeastern USA. Sci Tot Environ 689:232–244. https://doi.org/10.1016/j.scitotenv.2019.06.351

    CAS  CrossRef  Google Scholar 

  • Cheshire K, Boyero L, Pearson RG (2005) Food webs in tropical Australian streams: shredders are not scarce. Freshw Biol 50:748–769

    CrossRef  Google Scholar 

  • Chung N, Suberkropp K (2009) Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera: Limnephilidae). Hydrobiologia 630:257–269

    CrossRef  Google Scholar 

  • Ciborowski JJ, Craig DA, Fry KM (1997) Dissolved organic matter as food for black fly larvae (Diptera: Simuliidae). J N Am Benthol Soc 16:771–780

    CrossRef  Google Scholar 

  • Classen-Rodríguez L, Gutiérrez-Fonseca PE, Ramírez A (2019) Leaf litter decomposition and macroinvertebrate assemblages along an urban stream gradient in Puerto Rico. Biotropica 51:641–651

    CrossRef  Google Scholar 

  • Colon-Gaud C, Whiles MR, Brenes R et al (2010) Potential functional redundancy and resource facilitation between tadpoles and insect grazers in tropical headwater streams. Freshw Biol 55:2077–2088. https://doi.org/10.1111/j.1365-2427.2010.02464.x

    CrossRef  Google Scholar 

  • Compson ZG, Hungate BA, Koch GW et al (2015) Closely related tree species differentially influence the transfer of carbon and nitrogen from leaf litter up the aquatic food web. Ecosystems 18:186–201

    CAS  CrossRef  Google Scholar 

  • Compson ZG, Hungate BA, Whitham TG et al (2018) Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation. Ecology 99:1759–1770

    PubMed  CrossRef  Google Scholar 

  • Compson ZG, Hungate BA, Whitham TG et al (2016) Plant genotype influences aquatic-terrestrial ecosystem linkages through timing and composition of insect emergence. Ecosphere 7:e01331

    CrossRef  Google Scholar 

  • Couceiro SR, Hamada N, Forsberg BR et al (2011) Trophic structure of macroinvertebrates in Amazonian streams impacted by anthropogenic siltation. Austral Ecol 36:628–637

    Google Scholar 

  • Creed IF, McKnight DM, Pellerin BA et al (2015) The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Can J Fish Aquat Sci 72:1272–1285. https://doi.org/10.1139/cjfas-2014-0400

    CrossRef  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD et al (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565

    CAS  PubMed  CrossRef  Google Scholar 

  • Crowl TA, McDowell WH, Covich AP et al (2001) Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82:775–783

    CrossRef  Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641

    CrossRef  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Ann Rev Eco Syst 10:147–172

    Google Scholar 

  • Cummins KW, Petersen RC, Howard FO et al (1973) Utilization of leaf litter by stream detritivores. Ecology 54:336–345

    CrossRef  Google Scholar 

  • Cushing CE, Minshall GW, Newbold JD (1993) Transport dynamics of fine particulate organic matter in two Idaho streams. Limnol Oceanog 38:1101–1115

    CAS  CrossRef  Google Scholar 

  • da Costa END, de Souza JC, Pereira MA et al (2017) Influence of hydrological pathways on dissolved organic carbon fluxes in tropical streams. Ecol Evol 7:228–239

    PubMed  CrossRef  Google Scholar 

  • Dahm CN (1981) Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams. Can J Fish Aquat Sci 38:68–76

    CAS  CrossRef  Google Scholar 

  • Dalu T, Richoux NB, Froneman PW (2016) Nature and source of suspended particulate matter and detritus along an austral temperate river–estuary continuum, assessed using stable isotope analysis. Hydrobiologia 767:95–110

    CrossRef  Google Scholar 

  • Danger M, Cornut J, Chauvet E et al (2013) Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613

    PubMed  CrossRef  Google Scholar 

  • Danger M, Gessner MO, Bärlocher F (2016) Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fungal Ecology 19:100–111

    CrossRef  Google Scholar 

  • Dangles O, Gessner MO, Guerold F et al (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    CAS  CrossRef  Google Scholar 

  • Demars B, Friberg N, Kemp J et al. (2018) Reciprocal carbon subsidies between autotrophs and bacteria in stream food webs under stoichiometric constraints. bioRxiv:447987

    Google Scholar 

  • Demars BO, Friberg N, Thornton B (2019) Pulse of dissolved organic matter alters reciprocal carbon subsidies between autotrophs and bacteria in stream food webs. Ecol Monogr 90:e01399

    Google Scholar 

  • Demi LM, Benstead JP, Rosemond AD et al (2018) Litter P content drives consumer production in detritus-based streams spanning an experimental N: P gradient. Ecology 99:347–359

    PubMed  CrossRef  Google Scholar 

  • Devol A, Hedges J (2001) Organic matter and nutrients in the mainstem Amazon River. In: Victoria RL, Richey JE (eds) McClain ME. The Biogeochemistry of the Amazon Basin Oxford University Press, New York, pp 275–306

    Google Scholar 

  • Dick J, Tetzlaff D, Birkel C et al (2015) Modelling landscape controls on dissolved organic carbon sources and fluxes to streams. Biogeochemistry 122:361–374

    CAS  CrossRef  Google Scholar 

  • Diez J, Elosegi A, Chauvet E et al (2002) Breakdown of wood in the Aguera stream. Freshw Biol 47:2205–2215

    CrossRef  Google Scholar 

  • Dobson M, Magana A, Mathooko JM et al (2002) Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshw Biol 47:909–919

    CrossRef  Google Scholar 

  • Duarte S, Pascoal C, Cássio F (2004) Effects of zinc on leaf decomposition by fungi in streams: studies in microcosms. Micro Eco 48:366–374

    Google Scholar 

  • Dutton CL, Subalusky AL, Hamilton SK et al (2018) Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nat Comm 9:1951

    CrossRef  CAS  Google Scholar 

  • Eggert S, Wallace JB (2007) Wood biofilm as a food resource for stream detritivores. Limnol Oceanog 52:1239–1245

    CrossRef  Google Scholar 

  • Enríquez S, Duarte CM, Sand-Jensen KJ (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content. Oecologia 94:457–471

    PubMed  CrossRef  Google Scholar 

  • Epstein DM, Kelso JE, Baker MA (2016) Beyond the urban stream syndrome: organic matter budget for diagnostics and restoration of an impaired urban river. Urban Ecosyst 19:1041–1061. https://doi.org/10.1007/s11252-016-0557-x

    CrossRef  Google Scholar 

  • Ertel JR, Hedges JI, Devol AH et al (1986) Dissolved humic substances of the Amazon River system 1. Limnol Oceanog 31:739–754

    CAS  CrossRef  Google Scholar 

  • Farrell KJ, Rosemond AD, Kominoski JS et al (2018) Variation in detrital resource stoichiometry signals differential carbon to nutrient limitation for stream consumers across biomes. Ecosystems 21:1676–1691

    CAS  CrossRef  Google Scholar 

  • Fellman JB, Hood E, D’amore DV et al. (2009) Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95:277–293

    Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol Oceanog 55:2452–2462. https://doi.org/10.4319/lo.2010.55.6.2452

    CAS  CrossRef  Google Scholar 

  • Fernandes I, Duarte S, Cássio F et al (2015) Plant litter diversity affects invertebrate shredder activity and the quality of fine particulate organic matter in streams. Mari Freshw Res 66:449–458

    CAS  CrossRef  Google Scholar 

  • Ferreira V, Castela J, Rosa P et al (2016) Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquat Ecol 50:711–725

    CAS  CrossRef  Google Scholar 

  • Findlay S (2010) Stream microbial ecology. J N Am Benthol Soc 29:170–181. https://doi.org/10.1899/09-023.1

    CrossRef  Google Scholar 

  • Findlay S, Strayer D, Goumbala C et al (1993) Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol Oceanog 38:1493–1499

    CAS  CrossRef  Google Scholar 

  • Findlay S, Tank J, Dye S et al (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66

    CAS  PubMed  CrossRef  Google Scholar 

  • Findlay SEG, Parr TB (2017) Chapter 24—Dissolved Organic Matter. In: Lamberti GA, Hauer FR (eds) Methods in Stream Ecology (Third Edition). Academic Press, Amsterdam pp 21–36. https://doi.org/10.1016/B978-0-12-813047-6.00002-4

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    CAS  CrossRef  Google Scholar 

  • Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire-integrative approach to stream ecosystem metabolism. Ecol Mono 43:421–439. https://doi.org/10.2307/1942301

    CrossRef  Google Scholar 

  • Flury S, Gessner MO (2011) Experimentally simulated global warming and nitrogen enrichment on microbial litter decomposers in a marsh. Appl Environ Microbiol 77:803–809. https://doi.org/10.1128/aem.01527-10

    CAS  CrossRef  PubMed  Google Scholar 

  • Follstad Shah JJ, Kominoski JS, Ardón M et al (2017) Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Glob Chan Bio 23:3064–3075

    CrossRef  Google Scholar 

  • Frost PC, Benstead JP, Cross WF et al (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Lett 9:774–779. https://doi.org/10.1111/j.1461-0248.2006.00919.x

    CrossRef  PubMed  Google Scholar 

  • Fuller CL, Evans-White MA, Entrekin SA (2015) Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry. Oecologia 177:837–848. https://doi.org/10.1007/s00442-014-3154-9

    CrossRef  PubMed  Google Scholar 

  • Galas J, Dumnicka E (2003) Organic matter dynamics and invertebrate functional groups in a mountain stream in the West Tatra mountains, Poland. Int Rev Hydrobio 88:362–371

    CrossRef  Google Scholar 

  • García-Palacios P, McKie BG, Handa IT et al (2016) The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol 30:819–829

    CrossRef  Google Scholar 

  • Gergel SE, Turner MG, Kratz TK (1999) Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol Appl 9:1377–1390

    CrossRef  Google Scholar 

  • Gessner M, Chauvet E (1997) Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol Oceanog 42:496–505

    CAS  CrossRef  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    CrossRef  Google Scholar 

  • Gessner MO, Swan CM, Dang CK et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010

    CrossRef  PubMed  Google Scholar 

  • Golladay SW (1997) Suspended particulate organic matter concentration and export in streams. J N Am Benthol Soc 16:122–131

    CrossRef  Google Scholar 

  • Graça M, Maltby L, Calow P (1993) Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies. Oecologia 93:139–144

    PubMed  CrossRef  Google Scholar 

  • Graça MA, Bärlocher F, Gessner MO (2005) Methods to study litter decomposition: a practical guide. Springer Science & Business Media, New York

    CrossRef  Google Scholar 

  • Graca MAS (2001) The role of invertebrates on leaf litter decomposition in streams—A review. Int Rev Hydrobiol 86:383–393

    CrossRef  Google Scholar 

  • Graca MAS, Ferreira V, Canhoto C et al (2015) A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1–12. https://doi.org/10.1002/iroh.201401757

    CAS  CrossRef  Google Scholar 

  • Gregory SV, Gurnell A, Piégay H et al (2017) Chapter 29—Dynamics of Wood. In: Lamberti GA, Hauer FR (eds) Methods in Stream Ecology (Third Edition). Academic Press, Amsterdam, pp 113–126. https://doi.org/10.1016/B978-0-12-813047-6.00007-3

  • Greig H, McIntosh A (2006) Indirect effects of predatory trout on organic matter processing in detritus-based stream food webs. Oikos 112:31–40

    CrossRef  Google Scholar 

  • Guéguen C, Guo L, Wang D et al (2006) Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry 77:139–155

    CrossRef  CAS  Google Scholar 

  • Gulis V, Rosemond AD, Suberkropp K et al (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447

    CrossRef  Google Scholar 

  • Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Gutierrez-Fonseca PE, Ramirez A, Pringle CM (2018) Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns. PLoS ONE 13:e0191781

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Halvorson HM, Barry JR, Lodato MB et al (2019) Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol 33:188–201

    PubMed  CrossRef  Google Scholar 

  • Halvorson HM, Fuller C, Entrekin SA et al (2015a) Dietary influences on production, stoichiometry and decomposition of particulate wastes from shredders. Freshw Biol 60:466–478. https://doi.org/10.1111/fwb.12462

    CAS  CrossRef  Google Scholar 

  • Halvorson HM, Fuller CL, Entrekin SA et al (2018) Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos 127:1471–1481

    CAS  CrossRef  Google Scholar 

  • Halvorson HM, Scott JT, Sanders AJ et al (2015b) A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshw Sci 34:508–518. https://doi.org/10.1086/680724

    CrossRef  Google Scholar 

  • Halvorson HM, Sperfeld E, Evans-White MA (2017) Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory. Ecology 98:2995–3002

    PubMed  CrossRef  Google Scholar 

  • Handa IT, Aerts R, Berendse F et al (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218. https://doi.org/10.1038/nature13247

    CAS  CrossRef  PubMed  Google Scholar 

  • Harris HE, Baxter CV, Davis JM (2015) Debris flows amplify effects of wildfire on magnitude and composition of tributary subsidies to mainstem habitats. Freshw Sci 34:1457–1467. https://doi.org/10.1086/684015

    CrossRef  Google Scholar 

  • Harvey JW, Drummond JD, Martin RL et al (2012) Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. J Geophys Res: Biogeosciences 117

    Google Scholar 

  • Hedges JI, Clark WA, Quay PD et al (1986) Compositions and fluxes of particulate organic material in the Amazon River1. Limol Oceanog 31:717–738

    CAS  CrossRef  Google Scholar 

  • Hedges JI, Cowie GL, Richey JE et al (1994) Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limol Oceanog 39:743–761. https://doi.org/10.4319/lo.1994.39.4.0743

    CAS  CrossRef  Google Scholar 

  • Hershey AE, Merritt RW, Miller MC et al. (1996) Organic matter processing by larval black flies in a temperate woodland stream. Oikos 524–532

    Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    CrossRef  Google Scholar 

  • Hinton M, Schiff S, English M (1997) The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 36:67–88

    CAS  CrossRef  Google Scholar 

  • Hladyz S, Abjornsson K, Giller PS et al (2011) Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J Appl Ecol 48:443–452. https://doi.org/10.1111/j.1365-2664.2010.01924.x

    CrossRef  Google Scholar 

  • Hood E, Gooseff MN, Johnson SL (2006) Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds. Oregon. J Geophys Res-Biogeosci 111:8. https://doi.org/10.1029/2005jg000082

    CrossRef  Google Scholar 

  • Hood E, Williams MW, McKnight DM (2005) Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255

    CAS  CrossRef  Google Scholar 

  • Hoover TM, Richardson JS, Yonemitsu N (2006) Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshw Biol 51:435–447

    CrossRef  Google Scholar 

  • Hotchkiss E, Hall R Jr, Sponseller R et al (2015) Sources of and processes controlling CO 2 emissions change with the size of streams and rivers. Nat Geosci 8:696

    CAS  CrossRef  Google Scholar 

  • Hutchens JJ, Wallace JB, Grubaugh JW (2017) Transport and storage of fine particulate organic matter. In: Lamberti GA, Hauer FR (eds) Methods in Stream Ecology (Third Edition). Academic Press, Amsterdam, pp 113–126. https://doi.org/10.1016/B978-0-12-813047-6.00007-3

  • Irons JG, Oswood MW, Stout RJ et al (1994) Latitudinal patterns in leaf-litter breakdown—is temperature really important. Freshw Biol 32:401–411

    CrossRef  Google Scholar 

  • Jackrel SL, Morton TC, Wootton JT (2016) Intraspecific leaf chemistry drives locally accelerated ecosystem function in aquatic and terrestrial communities. Ecology 97:2125–2135

    PubMed  CrossRef  Google Scholar 

  • Jackrel SL, Wootton JT (2014) Local adaptation of stream communities to intraspecific variation in a terrestrial ecosystem subsidy. Ecology 95:37–43

    PubMed  CrossRef  Google Scholar 

  • James AB, Henderson IM (2005) Comparison of coarse particulate organic matter retention in meandering and straightened sections of a third-order New Zealand stream. Riv Res App 21:641–650

    CrossRef  Google Scholar 

  • Jenkins CC, Suberkropp K (1995) The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshwa Biol 33:245–253

    CAS  CrossRef  Google Scholar 

  • Jones J (1997) Benthic organic matter storage in streams: influence of detrital import and export, retention mechanisms, and climate. J N Am Benthol Soc 16:109–119

    CrossRef  Google Scholar 

  • Judd KE, Crump BC, Kling GW (2006) Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–2079

    PubMed  CrossRef  Google Scholar 

  • Jung B-J, Jeanneau L, Alewell C et al (2015) Downstream alteration of the composition and biodegradability of particulate organic carbon in a mountainous, mixed land-use watershed. Biogeochemistry 122:79–99

    CAS  CrossRef  Google Scholar 

  • Kaplan LA, Bott TL (1989) Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol Oceanog 34:718–733

    CAS  CrossRef  Google Scholar 

  • Karlsson OM, Richardson JS, Kiffney PM (2005) Modelling organic matter dynamics in headwater streams of south-western British Columbia, Canada. Ecol Model 183:463–476

    CrossRef  Google Scholar 

  • Karwan DL, Saiers JE (2009) Influences of seasonal flow regime on the fate and transport of fine particles and a dissolved solute in a New England stream. Water Resour Res 45

    Google Scholar 

  • Kaushal SS, Delaney-Newcomb K, Findlay SEG et al (2014) Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121:23–44. https://doi.org/10.1007/s10533-014-9979-9

    CAS  CrossRef  Google Scholar 

  • Kaushik SJ, Hynes H (1971) The fate of autum-shed leaves that fall into streams. Archiv Für Hydrobiologie 68:465–515

    Google Scholar 

  • Kautza A, Sullivan SMP (2016) The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system. Ecology 97:694–705. https://doi.org/10.1890/15-1095.1

    CrossRef  PubMed  Google Scholar 

  • Kiffer WP, Mendes F, Casotti CG et al (2018) Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS ONE 13:e0190743

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kochi K, Mishima Y, Nagasaka A (2010) Lateral input of particulate organic matter from bank slopes surpasses direct litter fall in the uppermost reaches of a headwater stream in Hokkaido, Japan. Limnology 11:77–84

    CAS  CrossRef  Google Scholar 

  • Kochi K, Yanai S, Nagasaka A (2004) Energy input from a riparian forest into a headwater stream in Hokkaido, Japan. Archiv für Hydrobio 160:231–246

    CrossRef  Google Scholar 

  • Kominoski JS, Rosemond AD, Benstead JP et al (2018) Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss. Limnol Oceanog 63:22–36

    CAS  CrossRef  Google Scholar 

  • Kuehn KA (2016) Lentic and lotic habitats as templets for fungal communities: traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecology 19:135–154

    CrossRef  Google Scholar 

  • Lamberti GA, Entrekin SA, Griffiths NA et al. (2017) Coarse Particulate Organic Matter: Storage, Transport, and Retention. In: Methods in stream ecology. Elsevier, pp 55–69

    Google Scholar 

  • Leroy CJ, Marks JC (2006) Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw Biol 51:605–617

    CrossRef  Google Scholar 

  • LeRoy CJ, Whitham TG, Wooley SC et al (2007) Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. J N Am Benthol Soc 26:426–438. https://doi.org/10.1899/06-113.1

    CrossRef  Google Scholar 

  • Lisboa LK, da Silva ALL, Siegloch AE et al (2015) Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Mar Freshw Res 66:674–680

    CAS  CrossRef  Google Scholar 

  • Lock M, Wallis P, Hynes H (1977) Colloidal organic carbon in running waters. Oikos 1–4

    Google Scholar 

  • López-Rojo N, Martínez A, Pérez J et al (2018) Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE 13:e0198243

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lottig NR, Buffam I, Stanley EH (2013) Comparisons of wetland and drainage lake influences on stream dissolved carbon concentrations and yields in a north temperate lake-rich region. Aquat Sci 75:619–630

    CAS  CrossRef  Google Scholar 

  • Lu YH, Bauer JE, Canuel EA et al (2014) Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119:275–292. https://doi.org/10.1007/s10533-014-9965-2

    CAS  CrossRef  Google Scholar 

  • Lujan NK, German DP, Winemiller K (2011) Do wood grazing fishes partition their niche?: morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Funct Ecol 25:1327–1338

    CrossRef  Google Scholar 

  • Lupon A, Denfeld BA, Laudon H et al (2019) Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. Limnol Oceanog 64:1545–1557

    CAS  CrossRef  Google Scholar 

  • Magana AM, Bretschko G (2003) Retention of coarse particulate organic matter on the sediments of Njoro River, Kenya. Int Rev Hydrobio 88:414–426

    CrossRef  Google Scholar 

  • Malmqvist B, Nilsson LM, Svensson BS (1978) Dynamics of detritus in a small stream in southern Sweden and its influence on the distribution of the bottom animal communities. Oikos 1978:3–16

    CrossRef  Google Scholar 

  • Manning DW, Rosemond AD, Kominoski JS et al (2015) Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates. Ecology 96:2214–2224

    PubMed  CrossRef  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM et al (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225

    PubMed  CrossRef  Google Scholar 

  • Marks JC (2019) Revisiting the fates of dead leaves that fall into streams. Ann Rev Ecol Evol System Review of Ecology, Evolution, and Systematics 50:547–568. https://doi.org/10.1146/annurev-ecolsys-110218-024755

    CrossRef  Google Scholar 

  • Martinez B, Velasco J, Suarez ML et al (1998) Benthic organic matter dynamics in an intermittent stream in South-East Spain. Archiv für Hydrobiol 141:303–320

    CAS  CrossRef  Google Scholar 

  • Marx A, Dusek J, Jankovec J et al (2017) A review of CO2 and associated carbon dynamics in headwater streams: A global perspective. Rev Geophys 55:560–585

    CrossRef  Google Scholar 

  • Masese FO, Salcedo-Borda JS, Gettel GM et al (2017) Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132:1–22

    CAS  CrossRef  Google Scholar 

  • Mathuriau C, Chauvet E (2002) Breakdown of leaf litter in a neotropical stream. J N Am Benthol Soc 21:384–396

    CrossRef  Google Scholar 

  • Mattsson T, Kortelainen P, Räike A (2005) Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76:373–394

    CAS  CrossRef  Google Scholar 

  • McArthur MD, Richardson JS (2002) Microbial utilization of dissolved organic carbon leached from riparian litterfall. Can J Fish Aquat Sci 59:1668–1676

    CrossRef  Google Scholar 

  • McClain ME, Richey JE, Brandes JA et al (1997) Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil. Glob Biogeochem Cycl 11:295–311

    CrossRef  Google Scholar 

  • McDowell WH, Fisher SG (1976) Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57:561–569

    CrossRef  Google Scholar 

  • McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Mono 58:177–195

    CrossRef  Google Scholar 

  • McNamara CJ, Leff LG (2004) Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. J N Am Benthol Soc 23:677–685

    CrossRef  Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD et al (1983) The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia 58:281–285

    PubMed  CrossRef  Google Scholar 

  • Menninger HL, Palmer MA, Craig LS et al (2008) Periodical cicada detritus impacts stream ecosystem metabolism. Ecosystems 11:1306–1317

    CrossRef  Google Scholar 

  • Meyer J (1994) The microbial loop in flowing waters. Microb Ecol 28:195–199

    CAS  PubMed  CrossRef  Google Scholar 

  • Meyer JL, Likens GE (1979) Transport and transformation of phosphorus in a forest stream ecosystem. 60:1255–1269

    CAS  Google Scholar 

  • Meyer JL, Tate CM (1983) The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology 64:33–44

    CrossRef  Google Scholar 

  • Meyer JL, Wallace JB, Eggert SL (1998) Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1:240–249. https://doi.org/10.1007/s100219900019

    CAS  CrossRef  Google Scholar 

  • Miller J, Georgian T (1992) Estimation of fine particulate transport in streams using pollen as a seston analog. J N Am Benthol Soc 11:172–180

    CrossRef  Google Scholar 

  • Mineau MM, Baxter CV, Marcarelli AM et al (2012) An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy. Ecology 93:1501–1508. https://doi.org/10.1890/11-1700.1

    CrossRef  PubMed  Google Scholar 

  • Mineau MM, Wollheim WM, Buffam I et al (2016) Dissolved organic carbon uptake in streams: A review and assessment of reach-scale measurements. J Geophys Res Biogeo 121:2019–2029

    CAS  CrossRef  Google Scholar 

  • Minshall GW (1996) Organic matter budgets. In: Hauer ER, Lamberti G (eds) Methods in Stream Ecology. Academic Press, San Diego, pp 591–607

    Google Scholar 

  • Minshall GW, Petersen RC, Cummins KW et al (1983) Interbiome comparison of stream ecosystem dynamics. Ecol Mono 53:1–25

    CrossRef  Google Scholar 

  • Minshall GW, Thomas SA, Newbold JD et al (2000) Physical factors influencing fine organic particle transport and deposition in streams. J N Am Benthol Soc 19:1–16

    CrossRef  Google Scholar 

  • Moeller JR, Minshall GW, Cummins KW et al (1979) Transport of dissolved organic carbon in streams of differing physiographic characteristics. Organ Geochem 1:139–150

    CAS  CrossRef  Google Scholar 

  • Moghadam FS, Zimmer M (2016) Effects of warming, nutrient enrichment and detritivore presence on litter breakdown and associated microbial decomposers in a simulated temperate woodland creek. Hydrobiologia 770:243–256. https://doi.org/10.1007/s10750-015-2596-3

    CrossRef  Google Scholar 

  • Mora-Gómez J, Elosegi A, Duarte S et al. (2016) Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Micro Ecol 92:fiw121

    Google Scholar 

  • Moran M, Covert J (2003) Photochemically mediated linkages between dissolved organic matter and bacterioplankton. In: Aquatic Ecosystems. Elsevier, pp 243–262

    Google Scholar 

  • Mulholland P (1997a) Organic matter dynamics in the west fork of Walker Branch, Tennessee, USA. Journal of the North American Benthological Society 16:61–67

    CrossRef  Google Scholar 

  • Mulholland P (2003) Large-scale patterns in dissolved organic carbon concentration, flux, and sources. Findlay SEG. Sinsabaugh RL. Aquatic Ecosystems. Elsevier, Amsterdam, pp 139–159

    Google Scholar 

  • Mulholland PJ (1997b) Dissolved organic matter concentration and flux in streams. Journal of the North American Benthological Society 16:131–141

    CrossRef  Google Scholar 

  • Naiman RJ (1982) Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can J Fish Aquat Sci 39:1699–1718

    CAS  CrossRef  Google Scholar 

  • Naiman RJ, Melillo JM, Hobbie JE (1986) Ecosystem alteation of boreal forest streams by beaver (Castor canadensis). Ecology 67:1254–1269

    CrossRef  Google Scholar 

  • Naiman RJ, Sedell JR (1979) Characterization of particulate organic matter transported by some Cascade Mountain streams. J Fish Board of Canada 36:17–31

    CAS  CrossRef  Google Scholar 

  • Nakajima T, Asaeda T, Fujino T et al (2006) Coarse particulate organic matter distribution in the pools and riffles of a second-order stream. Hydrobiologia 559:275–283

    CrossRef  Google Scholar 

  • Niyogi DK, Lewis Jr WM, McKnight DM (2001) Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecol App 11:506–516

    Google Scholar 

  • Neres-Lima V, Machado-Silva F, Baptista DF et al (2017) Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshw Biol 62:1012–1023

    CAS  CrossRef  Google Scholar 

  • Newbold J, Bott T, Kaplan L et al (1997) Organic matter dynamics in White Clay Creek, Pennsylvania, USA. J N Am Benthol Soc 16:46–50

    CrossRef  Google Scholar 

  • Ostrofsky ML (1993) Effect of tannins on leaf processing and conditioning rates in aquatic ecosystems: an empirical approach. Can J Fish Aquat Sci 50:1176–1180

    CAS  CrossRef  Google Scholar 

  • Park JH, Nayna OK, Begum MS et al (2018) Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems—concepts, emerging trends, and research challenges. Biogeosciences 15:3049–3069. https://doi.org/10.5194/bg-15-3049-2018

    CAS  CrossRef  Google Scholar 

  • Parr TB, Capps KA, Inamdar SP et al (2019) Animal-mediated organic matter transformation: Aquatic insects as a source of microbially bioavailable organic nutrients and energy. Funct Ecol 33:524–535. https://doi.org/10.1111/1365-2435.13242

    CrossRef  Google Scholar 

  • Parr TB, Cronan CS, Ohno T et al (2015) Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnol Oceanog 60:885–900

    CrossRef  Google Scholar 

  • Parr TB, Vaughn CC, Gido KB (2020) Animal effects on dissolved organic carbon bioavailability in an algal controlled ecosystem. Freshw Biol 65:1298–1310

    Google Scholar 

  • Pastor A, Compson ZG, Dijkstra P et al (2014) Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia 176:1111–1121

    PubMed  CrossRef  Google Scholar 

  • Paul MJ, Meyer JL, Couch CA (2006) Leaf breakdown in streams differing in catchment land use. Freshw Biol 51:1684–1695

    CrossRef  Google Scholar 

  • Petersen R, Cummins K (1974) Leaf processing in a woodland stream. Freshw Biol 4:343–368

    CrossRef  Google Scholar 

  • Pfeiffer A, Wohl E (2018) Where does wood most effectively enhance storage? Network-scale distribution of sediment and organic matter stored by instream wood. Geophys Res Lett 45:194–200. https://doi.org/10.1002/2017gl076057

    CrossRef  Google Scholar 

  • Pitt DB, Batzer DP (2015) Potential impacts on stream macroinvertebrates of an influx of woody debris from eastern hemlock demise. Fores Sci 61:737–746. https://doi.org/10.5849/forsci.14-069

    CrossRef  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. https://doi.org/10.1146/annurev.ecolsys.28.1.289

    CrossRef  Google Scholar 

  • Polunin N (1982) Processes contributing to the decay of reed (Phragmites australis) litter in freshwater. Arch Hydrobiol 94:182–209

    Google Scholar 

  • Polunin NV (1984) The decomposition of emergent macrophytes in fresh water. In: MacFayden A, Ford Ed (eds) Advances in Ecological Research, vol 14. Elsevier, Amsterdam, pp 115–166

    Google Scholar 

  • Pozo J, González E, Díez J et al (1997) Leaf-litter budgets in two contrasting forested streams. Limnetica 13:77–84

    Google Scholar 

  • Pray CL, Nowlin WH, Vanni MJ (2009) Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae: Magicicada) in woodland aquatic ecosystems. J N Am Benthol Soc 28:181–195. https://doi.org/10.1899/08-038.1

    CrossRef  Google Scholar 

  • Ramos Scharrón CE, Castellanos EJ, Restrepo C (2012) The transfer of modern organic carbon by landslide activity in tropical montane ecosystems. J Geophys Res: Biogeosciences 117

    Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355

    CAS  PubMed  CrossRef  Google Scholar 

  • Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209

    CrossRef  Google Scholar 

  • Raymond PA, Spencer RGM (2015) Riverine DOM. In: Hansell DA, Carlson CA. (eds) Biogeochemistry of Marine Dissolved Organic Matter, 2nd Edition. Academic Press Ltd-Elsevier Science Ltd, London. https://doi.org/10.1016/b978-0-12-405940-5.00011-x

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Nat Acad Sci 101:11001–11006

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Reiman J, Xu YJ (2019) Dissolved carbon export and CO2 outgassing from the lower Mississippi River-Implications of future river carbon fluxes. J Hydrol 578:124093

    CrossRef  Google Scholar 

  • Ribblett SG, Palmer MA, Wayne Coats D (2005) The importance of bacterivorous protists in the decomposition of stream leaf litter. Freshw Biol 50:516–526

    CrossRef  Google Scholar 

  • Rincon JE, Martinez I, Leon E et al (2005) Leaf litter processing of Anacardium excelsum in a tropical intermittent stream of northwestern Venezuela. Interciencia 30:228–234

    Google Scholar 

  • Roditi HA, Fisher NS, Sanudo-Wilhelmy SA (2000) Uptake of dissolved organic carbon and trace elements by zebra mussels. Nature 407:78–80

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosemond AD, Benstead JP, Bumpers PM et al (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosemond AD, Pringle CM, Ramirez A (1998) Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshw Biol 39:515–523

    CrossRef  Google Scholar 

  • Rosemond AD, Pringle CM, Ramirez A et al (2002) Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnol Oceanog 47:278–289

    CAS  CrossRef  Google Scholar 

  • Rosi-Marshall EJ, Wallace JB (2002) Invertebrate food webs along a stream resource gradient. Freshw Biol 47:129–141

    CrossRef  Google Scholar 

  • Royer TV, David MB (2005) Export of dissolved organic carbon from agricultural streams in Illinois, USA. Aquat Sci 67:465–471. https://doi.org/10.1007/s00027-005-0781-6

    CAS  CrossRef  Google Scholar 

  • Royer TV, Minshall GW (2001) Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshw Biol 46:603–610

    CAS  CrossRef  Google Scholar 

  • Rugenski AT, Murria C, Whiles MR (2012) Tadpoles enhance microbial activity and leaf decomposition in a neotropical headwater stream. Freshw Biol 57:1904–1913. https://doi.org/10.1111/j.1365-2427.2012.02853.x

    CrossRef  Google Scholar 

  • Ruhala SS, Zarnetske JP (2017) Using in-situ optical sensors to study dissolved organic carbon dynamics of streams and watersheds: A review. Sci Tot Environ 575:713–723

    CAS  CrossRef  Google Scholar 

  • Sanpera-Calbet I, Acuña V, Butturini A et al (2016) El Niño southern oscillation and seasonal drought drive riparian input dynamics in a Mediterranean stream. Limnol Oceanog 61:214–226

    CrossRef  Google Scholar 

  • Santonja M, Pellan L, Piscart C (2018) Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecol Evol 8:2542–2553

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sawakuchi HO, Neu V, Ward ND et al (2017) Carbon dioxide emissions along the lower Amazon River. Front Mar Sci 4:76

    CrossRef  Google Scholar 

  • Scarsbrook M, Quinn J, Halliday J et al (2001) Factors controlling litter input dynamics in streams draining pasture, pine, and native forest catchments. NZ J Mar Freshwat Res 35:751–762

    CrossRef  Google Scholar 

  • Schiff S, Aravena R, Mewhinney E et al (1998) Precambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Clim Change 40:167–188

    CAS  CrossRef  Google Scholar 

  • Schmidt TS, Clements WH, Wanty RB et al (2012) Geologic processes influence the effects of mining on aquatic ecosystems. Ecol Appl 22:870–879. https://doi.org/10.1890/11-0806.1

    CrossRef  PubMed  Google Scholar 

  • Schofield KA, Pringle CM, Meyer JL et al (2001) The importance of crayfish in the breakdown of rhododendron leaf litter. Freshw Biol 46:1191–1204

    CrossRef  Google Scholar 

  • Shang P, Lu YH, Du YX et al (2018) Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Sci Total Environ 612:1442–1453. https://doi.org/10.1016/j.scitotenv.2017.08.322

    CAS  CrossRef  PubMed  Google Scholar 

  • Siders AC, Compson ZG, Hungate BA et al (2018) Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly. Ecosphere 9:e02340

    CrossRef  Google Scholar 

  • Singer GA, Battin TJ (2007) Anthropogenic subsidies alter stream consumer-resource stoichiometry, biodiversity, and food chains. Ecol Appl 17:376–389

    PubMed  CrossRef  Google Scholar 

  • Sinsabaugh R, Weiland T, Linkins AE (1992) Enzymic and molecular analysis of microbial communities associated with lotic particulate organic matter. Freshw Biol 28:393–404

    CAS  CrossRef  Google Scholar 

  • Smith RM, Kaushal SS (2015) Carbon cycle of an urban watershed: exports, sources, and metabolism. Biogeochemistry 126:173–195. https://doi.org/10.1007/s10533-015-0151-y

    CAS  CrossRef  Google Scholar 

  • Smock L (1990) Spatial and temporal variation in organic matter storage in low-gradient, headwater streams. Arch Hydrobiol 118:169–184

    CAS  Google Scholar 

  • Sobczak WV, Findlay S (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology 83:3194–3209

    CrossRef  Google Scholar 

  • Sollins P, Glassman CA, Dahm CN (1985) Composition and possible origin of detrital material in streams. Ecology 66:297–299

    CAS  CrossRef  Google Scholar 

  • Spanhoff B, Meyer EI (2004) Breakdown rates of wood in streams. J N Am Benthol Soc 23:189–197

    CrossRef  Google Scholar 

  • Spencer RG, Hernes PJ, Dinga B et al (2016) Origins, seasonality, and fluxes of organic matter in the Congo River. Glob Biogeochem Cycle 30:1105–1121

    CAS  CrossRef  Google Scholar 

  • Spencer RGM, Butler KD, Aiken GR (2012) Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J Geophys Res-Biogeosci 117:14. https://doi.org/10.1029/2011jg001928

    CrossRef  Google Scholar 

  • Spencer RGM, Kellerman AM, Podgorski DC et al (2019) Identifying the Molecular Signatures of Agricultural Expansion in Amazonian Headwater Streams. J Geophys Res-Biogeosci 124:1637–1650. https://doi.org/10.1029/2018jg004910

    CrossRef  Google Scholar 

  • Sponseller R, Benfield E (2001) Influences of land use on leaf breakdown in southern Appalachian headwater streams: a multiple-scale analysis. J N Am Benthol Soc 20:44–59

    CrossRef  Google Scholar 

  • Stanley EH, Powers SM, Lottig NR et al (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42. https://doi.org/10.1111/j.1365-2427.2011.02613.x

    CrossRef  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Chan Biol 13:1823–1842

    CrossRef  Google Scholar 

  • Subalusky AL, Dutton CL, Njoroge L et al (2018) Organic matter and nutrient inputs from large wildlife influence ecosystem function in the Mara River, Africa. Ecology 99:2558–2574

    PubMed  CrossRef  Google Scholar 

  • Subalusky AL, Dutton CL, Rosi EJ et al (2017) Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc Natl Acad Sci U S A 114:7647–7652. https://doi.org/10.1073/pnas.1614778114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Subalusky AL, Post DM (2019) Context dependency of animal resource subsidies. Biol Rev 94:517–538. https://doi.org/10.1111/brv.12465

    CrossRef  PubMed  Google Scholar 

  • Suberkropp K, Godshalk G, Klug M (1976) Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57:720–727

    CAS  CrossRef  Google Scholar 

  • Suberkropp K, Klug M (1976) Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–719

    CrossRef  Google Scholar 

  • Sutfin NA, Wohl EE, Dwire KA (2016) Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf Process Landf 41:38–60

    CrossRef  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146

    CrossRef  Google Scholar 

  • Tant CJ, Rosemond AD, First MR (2013) Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter. Freshw Sci 32:1111–1121. https://doi.org/10.1899/12-049.1

    CrossRef  Google Scholar 

  • Thomas SM, Griffiths SW, Ormerod SJ (2016) Beyond cool: adapting upland streams for climate change using riparian woodlands. Glob Chan Biol 22:310–324

    CrossRef  Google Scholar 

  • Thurman EM (2012) Organic geochemistry of natural waters, vol 2. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Tiegs SD, Clapcott JE, Griffiths NA et al (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol Indic 32:131–139

    CAS  CrossRef  Google Scholar 

  • Tiegs SD, Costello DM, Isken MW et al. (2019) Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci Advanc 5:eaav0486

    Google Scholar 

  • Tiegs SD, Levi PS, Ruegg J et al (2011) Ecological effects of live salmon exceed those of carcasses during an annual spawning migration. Ecosystems 14:598–614. https://doi.org/10.1007/s10021-011-9431-0

    CAS  CrossRef  Google Scholar 

  • Tomczyk NJ, Parr TB, Gray E et al (2018a) Trophic strategies influence metal bioaccumulation in detritus-based, aquatic food webs. Environ Sci Technol 52:11886–11894. https://doi.org/10.1021/acs.est.8b04009

    CAS  CrossRef  PubMed  Google Scholar 

  • Tomczyk NJ, Parr TB, Wenger SJ et al (2018b) The influence of land cover on the sensitivity of streams to metal pollution. Water Res 144:55–63. https://doi.org/10.1016/j.watres.2018.06.058

    CAS  CrossRef  PubMed  Google Scholar 

  • Tonin AM, Gonçalves JF, Bambi P et al (2017) Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Sci Repo 7:10799. https://doi.org/10.1038/s41598-017-10576-8

    CAS  CrossRef  Google Scholar 

  • Tonin AM, Pozo J, Monroy S et al (2018) Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J Animal Ecol 87:1465–1474

    CrossRef  Google Scholar 

  • Tuchman NC, Wahtera KA, Wetzel RG et al (2003) Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495:203–211. https://doi.org/10.1023/a:1025493018012

    CAS  CrossRef  Google Scholar 

  • Usio N, Townsend CR (2001) The significance of the crayfish Paranephrops zealandicus as shredders in a New Zealand headwater stream. J Crustacean Biol 21:354–359

    CrossRef  Google Scholar 

  • Vanni MJ, McIntyre PB, Allen D et al (2017) A global database of nitrogen and phosphorus excretion rates of aquatic animals. Ecology 98:1475

    PubMed  CrossRef  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW et al (1980) River continuum concept. Can J Fish Aq Sci 37:130–137. https://doi.org/10.1139/f80-017

    CrossRef  Google Scholar 

  • Vazquez E, Amalfitano S, Fazi S et al (2011) Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102:59–72. https://doi.org/10.1007/s10533-010-9421-x

    CrossRef  Google Scholar 

  • Venarsky MP, Benstead JP, Huryn AD et al (2018) Experimental detritus manipulations unite surface and cave stream ecosystems along a common energy gradient. Ecosystems 21:629–642

    CAS  CrossRef  Google Scholar 

  • Wallace JB, Cuffney T, Webster J et al (1991) Export of fine organic particles from headwater streams: effects of season, extreme discharges, and invertebrate manipulation. Limnol Oceanog 36:670–682

    CAS  CrossRef  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL et al (2015) Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96:1213–1228. https://doi.org/10.1890/14-1589.1

    CrossRef  PubMed  Google Scholar 

  • Wallace JB, Ross DH, Meyer JL (1982a) Seston and dissolved organic carbon dynamics in a southern Appalachian stream. Ecology 63:824–838

    CAS  CrossRef  Google Scholar 

  • Wallace JB, Webster JR, Cuffney TF (1982b) Stream detritus dynamics: regulation by invertebrate consumers. Oecologia 53:197–200

    PubMed  CrossRef  Google Scholar 

  • Wallace JB, Webster JR, Eggert SL et al (2001) Large woody debris in a headwater stream: long-term legacies of forest disturbance. Int Rev Hydrobio 86:501–513

    CrossRef  Google Scholar 

  • Wallace JB, Whiles MR, Eggert S et al (1995) Long-term dynamics of coarse particulate organic matter in three Appalachian Mountain streams. J N Am Benthol Soc 14:217–232

    CrossRef  Google Scholar 

  • Wallace TA, Ganf GG, Brookes JD (2008) A comparison of phosphorus and DOC leachates from different types of leaf litter in an urban environment. Freshw Biol 53:1902–1913

    CAS  CrossRef  Google Scholar 

  • Wallis P, Hynes H, Telang S (1981) The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain basin. Hydrobiologia 79:77–90

    CrossRef  Google Scholar 

  • Wanner S, Ockenfeld K, Brunke M et al (2002) The distribution and turnover of benthic organic matter in a lowland river: Influence of hydrology, seston load and impoundment. Riv Res App 18:107–122

    CrossRef  Google Scholar 

  • Wanner SC, Pusch M (2001) Analysis of particulate organic matter retention by benthic structural elements in a lowland river (River Spree, Germany). Archiv für Hydrobiologie:475–492

    Google Scholar 

  • Wantzen KM, Wagner R (2006) Detritus processing by invertebrate shredders: a neotropical-temperate comparison. Journal of the North American Benthological Society 25:216–232

    CrossRef  Google Scholar 

  • Wantzen KM, Wagner R, Suetfeld R et al (2002) How do plant-herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? InterVer für Limnol 28:815–821

    Google Scholar 

  • Ward GM, Aumen NG (1986) Woody debris as a source of fine particulate organic matter in coniferous forest stream ecosystems. Can J Fish Aq Sci 43:1635–1642

    CrossRef  Google Scholar 

  • Ward JV (1974) A temperature-stressed stream ecosystem below a hypolimnial release mountain reservoir. Arch Hydrobio 74:247–275

    Google Scholar 

  • Ward ND, Bianchi TS, Medeiros PM et al (2017) Where carbon goes when water flows: carbon cycling across the aquatic continuum. Front Mar Sci 4:27. https://doi.org/10.3389/fmars.2017.00007

    CrossRef  Google Scholar 

  • Webster J, Benfield E (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    CrossRef  Google Scholar 

  • Webster J, Covich A, Tank J et al (1994) Retention of coarse organic particles in streams in the southern Appalachian Mountains. J N Am Benthol Soc 13:140–150

    CrossRef  Google Scholar 

  • Webster J, Golladay S, Benfield E et al (1990) Effects of forest disturbance on particulate organic matter budgets of small streams. J N Am Benthol Soc 9:120–140

    CrossRef  Google Scholar 

  • Webster J, Meyer JL (1997) Organic matter budgets for streams: a synthesis. J N Am Benthol Soc 16:141–161

    CrossRef  Google Scholar 

  • Webster J, Morkeski K, Wojculewski C et al (2012) Effects of hemlock mortality on streams in the southern Appalachian Mountains. Am Mid Nat 168:112–132

    CrossRef  Google Scholar 

  • Webster J, Wallace J, Benfield E (1995) Organic processes in streams of the eastern United States. River and Stream Ecosystems-Ecosystems of the World 22:117–187

    Google Scholar 

  • Webster J, Wallace J, Benfield E (2006) Organic processes in streams of the eastern United States. River and stream ecosystems of the world University of California Press, Berkeley, California, pp 117–187

    Google Scholar 

  • Webster JR (1983) The role of benthic macroinvertebrates in detritus dynamics of streams: a computer simulation. Ecol Mono 53:383–404

    CrossRef  Google Scholar 

  • Webster JR, Benfield EF, Ehrman TP et al (1999) What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshw Biol 41:687–705

    CrossRef  Google Scholar 

  • Webster JR, Waide JB (1982) Effects of forest clearcutting on leaf breakdown in a southern Appalachian stream. Freshw Biol 12:331–344

    CrossRef  Google Scholar 

  • Wenger SJ, Subalusky AL, Freeman MC (2019) The missing dead: The lost role of animal remains in nutrient cycling in North American Rivers. Food Webs 18:e00106. https://doi.org/10.1016/j.fooweb.2018.e00106

    CrossRef  Google Scholar 

  • Wenisch B, Fernández DG, Szöcs E et al (2017) Does the loss of climate sensitive detritivore species alter leaf decomposition? Aq Sci 79:869–879

    CrossRef  Google Scholar 

  • West A, Lin C-W, Lin T-C et al (2011) Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol Ocean 56:77–85

    CrossRef  Google Scholar 

  • Westerhoff P, Anning D (2000) Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. J Hydrol 236:202–222. https://doi.org/10.1016/s0022-1694(00)00292-4

    CAS  CrossRef  Google Scholar 

  • Whiles MR, Hall RO, Dodds WK et al (2013) Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems 16:146–157. https://doi.org/10.1007/s10021-012-9602-7

    CrossRef  Google Scholar 

  • Wiegner TN, Seitzinger SP, Glibert PM et al (2006) Bioavailability of dissolved organic nitrogen and carbon from nine rivers in the eastern United States. Aq Microb Ecol 43:277–287

    CrossRef  Google Scholar 

  • Wild R, Gücker B, Brauns M (2019) Agricultural land use alters temporal dynamics and the composition of organic matter in temperate headwater streams. Freshw Sci 38

    Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF et al (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanog 55:1159–1171. https://doi.org/10.4319/lo.2010.55.3.1159

    CAS  CrossRef  Google Scholar 

  • Wilson HF, Saiers JE, Raymond PA et al (2013) Hydrologic drivers and seasonality of dissolved organic carbon concentration, nitrogen content, bioavailability, and export in a forested New England stream. Ecosystems 16:604–616

    CAS  CrossRef  Google Scholar 

  • Wipfli MS, Baxter CV (2010) Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds. Fisheries 35:373–387. https://doi.org/10.1577/1548-8446-35.8.373

    CrossRef  Google Scholar 

  • Wise JL, Van Horn DJ, Diefendorf AF et al (2019) Dissolved organic matter dynamics in storm water runoff in a dryland urban region. J Arid Environ 165:55–63. https://doi.org/10.1016/j.jaridenv.2019.03.003

    CrossRef  Google Scholar 

  • Wohl E (2015) Legacy effects on sediments in river corridors. Earth-Sci Rev 147:30–53. https://doi.org/10.1016/j.earscirev.2015.05.001

    CrossRef  Google Scholar 

  • Wohl E, Ogden FL (2013) Organic carbon export in the form of wood during an extreme tropical storm, Upper Rio Chagres, Panama. Earth Surf Proc Land 38:1407–1416

    Google Scholar 

  • Wotton RS, Malmqvist B (2001) Feces in aquatic ecosystems. Bioscience 51:537–544

    CrossRef  Google Scholar 

  • Wotton RS, Malmqvist B, Muotka T et al (1998) Fecal pellets from a dense aggregation of suspension-feeders in a stream: an example of ecosystem engineering. Limnol Oceanog 43:719–725

    CrossRef  Google Scholar 

  • Wright MS, Covich AP (2005a) The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica 37:403–408

    CrossRef  Google Scholar 

  • Wright MS, Covich AP (2005b) Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference. Microb Ecol 49:536–546

    CAS  PubMed  CrossRef  Google Scholar 

  • WWPU (2017) The United Nations World Water Development Report (2017) Wastewater: the untapped resource. UNESCO, Paris

    Google Scholar 

  • Wymore AS, Compson ZG, Liu CM et al (2013) Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshw Sci 32:663–672

    CrossRef  Google Scholar 

  • Wymore AS, Compson ZG, McDowell WH et al (2015) Leaf-litter leachate is distinct in optical properties and bioavailability to stream heterotrophs. Freshw Sci 34:857–866

    CrossRef  Google Scholar 

  • Wymore AS, Salpas E, Casaburi G et al (2018) Effects of plant species on stream bacterial communities via leachate from leaf litter. Hydrobiologia 807:131–144

    CAS  CrossRef  Google Scholar 

  • Yates CA, Johnes PJ, Spencer RGM (2019) Characterisation of treated effluent from four commonly employed wastewater treatment facilities: a UK case study. J Environ Manage 232:919–927. https://doi.org/10.1016/j.jenvman.2018.12.006

    CAS  CrossRef  PubMed  Google Scholar 

  • Yoon B, Raymond PA (2012) Dissolved organic matter export from a forested watershed during Hurricane Irene. Geophys Res Lett 39

    Google Scholar 

  • Yoshimura C, Gessner MO, Tockner K et al (2008) Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. J N Am Benthol Soc 27:664–673

    CrossRef  Google Scholar 

  • Young RG, Huryn AD (1999) Effects of land use on stream metabolism and organic matter turnover. Ecol Appl 9:1359–1376

    CrossRef  Google Scholar 

  • Yule CM (1996) Trophic relationships and food webs of the benthic invertebrate fauna of two aseasonal tropical streams on Bougainville Island, Papua New Guinea. J Trop Ecol 12:517–534

    CrossRef  Google Scholar 

  • Yule CM, Leong MY, Liew KC et al (2009) Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. J N Am Benthol Soc 28:404–415

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Allan .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Allan, J.D., Castillo, M.M., Capps, K.A. (2021). Detrital Energy and the Decomposition of Organic Matter. In: Stream Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-61286-3_7

Download citation