Skip to main content

Carbon Dynamics and Stream Ecosystem Metabolism

  • 896 Accesses

Abstract

Organic carbon is the fundamental currency of energy transfer in food webs. The study of stream ecosystem metabolism integrates all energy producing and energy consuming processes, providing a whole-ecosystem perspective of lotic ecosystems. The focus is on two central questions. First, what are the relative magnitudes of internal versus external energy sources, including their variation along a river’s length and with landscape setting? Second, how efficient is the stream ecosystem in metabolizing those energy supplies, versus export to downstream ecosystems and possibly to the oceans? The first is addressed by comparing gross primary production to ecosystem respiration. Mass balance estimation of all inputs and exports, and measures of the efficiency with which organic carbon is utilized, addresses the second question. The relationship between gross primary production and ecosystem respiration can indicate whether an ecosystem is reliant on internal production or requires external subsidies of organic matter to sustain whole-system respiration. Wherever gross primary production is low relative to ecosystem respiration, that location clearly is dependent upon external energy inputs, either from the adjacent terrestrial ecosystem or from upstream sources. Ecosystems where productivity exceeds respiration are likely to export organic matter downstream, and this is often the case for low-order streams.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-61286-3_14
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-61286-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 14.1

(Reproduced from Wetzel 1983)

Fig. 14.2

(Reproduced from Sutfin et al. 2016)

Fig. 14.3

(Reproduced from Vannote et al. 1980)

Fig. 14.4

(Reproduced from Lewis et al. 2001)

Fig. 14.5

(Reproduced from Bayley 1995)

Fig. 14.6

(Reproduced from Thorp and Delong 2002)

Fig. 14.7

(Reproduced from Roberts et al. 2007)

Fig. 14.8

(Reproduced from Sinsabaugh 1997)

Fig. 14.9

(Reproduced from Ulseth et al. 2019)

Fig. 14.10

(Reproduced from Huryn et al. 2014)

Fig. 14.11

(Reproduced from Hall et al. 2016)

Fig. 14.12

(Reproduced from Bernhardt et al. 2018)

Fig. 14.13

(Reproduced from Tromboni et al. 2017)

Fig. 14.14

(Reproduced from Levi et al. 2014)

Fig. 14.15

(Reproduced from Griffiths et al. 2014)

Fig. 14.16

(Reproduced from Arroita et al. 2019)

Fig. 14.17

(Reproduced from Hood et al 2018)

Fig. 14.18

(Reproduced from Webster and Meyer 1997)

Fig. 14.19

(Reproduced from Argerich et al. 2016)

Fig. 14.20

(Reproduced from Wohl et al. 2017)

Fig. 14.21

(Modified from Sutfin et al. 2016)

Fig. 14.22

(Reproduced from Wanner et al. 2002)

Fig. 14.23

(Reproduced from Griffiths et al. 2012)

References

  • Addy K, Gold AJ, Loffredo JA et al (2018) Stream response to an extreme drought-induced defoliation event. Biogeochemistry 140:199–215

    CAS  CrossRef  Google Scholar 

  • Allen GH, Pavelsky TM (2018) Global extent of rivers and streams. Science 361:585–588

    CAS  PubMed  CrossRef  Google Scholar 

  • Appling AP, Hall RO, Yackulic CB et al (2018a) Overcoming equifinality: leveraging long time series for stream metabolism estimation. J Geophys Res Biogeo 123:624–645

    CAS  CrossRef  Google Scholar 

  • Appling AP, Read JS, Winslow LA et al (2018b) The metabolic regimes of 356 rivers in the United States. Sci data 5:180292

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Araujo-Lima CA, Forsberg BR, Victoria R et al (1986) Energy sources for detritivorous fishes in the Amazon. Science 234:1256–1258

    CAS  PubMed  CrossRef  Google Scholar 

  • Argerich A, Haggerty R, Johnson SL et al (2016) Comprehensive multiyear carbon budget of a temperate headwater stream. J Geophys Res Biogeo 121:1306–1315

    CAS  CrossRef  Google Scholar 

  • Arroita M, Elosegi A, Hall RO Jr (2019) Twenty years of daily metabolism show riverine recovery following sewage abatement. Limnol Oceanogr 64:S77–S92

    CAS  CrossRef  Google Scholar 

  • Atkinson CL, Sansom BJ, Vaughn CC et al. (2018) Consumer aggregations drive nutrient dynamics and ecosystem metabolism in nutrient-limited systems. Ecosystems:1–15

    Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S et al (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100. https://doi.org/10.1038/ngeo101

    CAS  CrossRef  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA et al (2009) The boundless carbon cycle. Nat Geosci 2:598

    CAS  CrossRef  Google Scholar 

  • Bayley PB (1988) Factors affecting growth rates of young tropical floodplain fishes: seasonality and density-dependence. Environ Biol Fishes 21:127–142

    CrossRef  Google Scholar 

  • Bayley PB (1989a) Aquatic environments in the Amazon Basin, with an analysis of carbon sources, fish production, and yield. Can J Fish Aquat Sci 106:399–08

    Google Scholar 

  • Bayley PB (1989b Understanding large river-floodplain ecosystems. BioScience 45:153–158

    Google Scholar 

  • Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophys Res Biogeo 117. https://doi.org/10.1029/2011jg001794

  • Bernhardt ES, Heffernan JB, Grimm NB et al (2018) The metabolic regimes of flowing waters. Limnol Oceanogr 63:S99–S118

    CrossRef  Google Scholar 

  • Blaszczak JR, Delesantro JM, Urban DL et al (2018) Scoured or suffocated: Urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol Oceanogr 64:877–894

    CrossRef  CAS  Google Scholar 

  • Bott TL, Newbold JD, Arscott DB (2006) Ecosystem metabolism in Piedmont streams: reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9:398–421

    CrossRef  Google Scholar 

  • Brett MT, Bunn SE, Chandra S et al (2017) How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw Biol 62:833–853

    CAS  CrossRef  Google Scholar 

  • Bunn SE, Balcombe SR, Davies PM et al. (2006) Aquatic productivity and food webs of desert river ecosystems. Ecol Desert Rivers:76–99

    Google Scholar 

  • Butman DE, Wilson HF, Barnes RT et al (2015) Increased mobilization of aged carbon to rivers by human disturbance. Nat Geosci 8:112

    CAS  CrossRef  Google Scholar 

  • Campeau A, Bishop K, Amvrosiadi N et al (2019) Current forest carbon fixation fuels stream CO2 emissions. Nat Commun 10:1–9

    CAS  CrossRef  Google Scholar 

  • Campeau A, Bishop K, Nilsson MB et al (2018) Stable carbon isotopes reveal soil-stream DIC linkages in contrasting headwater catchments. J Geophys Res-Biogeosci 123:149–167. https://doi.org/10.1002/2017jg004083

    CAS  CrossRef  Google Scholar 

  • Campeau A, Wallin MB, Giesler R et al (2017) Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci Rep 7:9158

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Caraco N, Bauer JE, Cole JJ et al (2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91:2385–2393

    PubMed  CrossRef  Google Scholar 

  • Castello L, Bayley PB, Fabré NN et al (2019) Flooding effects on abundance of an exploited, long-lived fish population in river-floodplains of the Amazon. Rev Fish Biol Fish 29:487–500

    CrossRef  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. https://doi.org/10.1007/s10021-006-9013-8

    CAS  CrossRef  Google Scholar 

  • Connor R, Renata A, Ortigara C et al. (2017) The United Nations World Water Development Report 2017. Wastewater: The untapped resource. The United Nations World Water Development Report. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Cummins K, Sedell J, Swanson F et al (1983) Organic matter budgets for stream ecosystems: problems in their evaluation. In: Barnes JR, Minshall GW (eds) Stream ecology: application and testing of general ecological theory. Springer, pp 299–353

    Google Scholar 

  • Cummins KW, Klug MT (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    CrossRef  Google Scholar 

  • Cummins KW, Petersen RC, Howard FO et al (1973) Utilization of leaf litter by stream detritivores. Ecology 54:336–345

    CrossRef  Google Scholar 

  • Demars BO (2019) Hydrological pulses and burning of dissolved organic carbon by stream respiration. Limnol Oceanogr 64:406–421

    CAS  CrossRef  Google Scholar 

  • Demars BO, Russell Manson J, Olafsson JS et al (2011) Temperature and the metabolic balance of streams. Freshw Biol 56:1106–1121

    CrossRef  Google Scholar 

  • Dettmers JM, Gutreuter S, Wahl DH et al (2001) Patterns in abundance of fishes in main channels of the upper Mississippi River system. Can J Fish Aquat Sci 58:933–942

    CrossRef  Google Scholar 

  • Dodds WK, Higgs SA, Spangler MJ et al (2018) Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network. Hydrobiologia 813:85–102. https://doi.org/10.1007/s10750-018-3516-0

    CrossRef  Google Scholar 

  • Dodds WK, Tromboni F, Saltarelli WA et al (2017) The root of the problem: direct influence of riparian vegetation on estimation of stream ecosystem metabolic rates. Limnol Oceanogr Lett 2:9–17

    CrossRef  Google Scholar 

  • Farly L, Hudon C, Cattaneo A et al (2019) Seasonality of a floodplain subsidy to the fish community of a large temperate river. Ecosystems 22:1823–1837

    CAS  CrossRef  Google Scholar 

  • Fasching C, Ulseth AJ, Schelker J et al (2016) Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnol Oceanogr 61:558–571

    PubMed  CrossRef  Google Scholar 

  • Findlay SEG, Likens GE, Hedin L, Fisher SG, McDowell WH (1997) Organic matter dynamics in Bear Brook, Hubbard Brook Experimental Forest, new Hampshire, USA. J N Am Benthol Soc 16:43–46

    CrossRef  Google Scholar 

  • Findlay S, Smith PJ, Meyer JL (1986) Effect of detritus addition on metabolism of river sediment. Hydrobiologia 137: 257-263

    Google Scholar 

  • Fisher SG, Carpenter SR (1976) Ecosystem and macrophyte primary production of the Fort River, Massachusetts. Hydrobiologia 49:175-187

    Google Scholar 

  • Fisher SG (1977) Organic matter processing by a stream‐segment ecosystem: Fort River, Massachusetts, USA. Int Rev Ges Hydrobiol 62:701-727

    Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB et al (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    CAS  CrossRef  Google Scholar 

  • Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire–integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439. https://doi.org/10.2307/1942301

    CrossRef  Google Scholar 

  • Galat DL, Zweimüller I (2001) Conserving large-river fishes: is the highway analogy an appropriate paradigm? J N Am Benthol Soc 20:266–279

    CrossRef  Google Scholar 

  • Golladay SW (1997) Suspended particulate organic matter concentration and export in streams. J N Am Benthol Soc 16:122–131

    CrossRef  Google Scholar 

  • Griffiths NA, Tank JL, Royer TV et al (2013) Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol Oceanogr 58:1513–1529

    CAS  CrossRef  Google Scholar 

  • Griffiths NA, Tank JL, Royer TV et al (2012) Temporal variation in organic carbon spiraling in Midwestern agricultural streams. Biogeochemistry 108:149–169. https://doi.org/10.1007/s10533-011-9585-z

    CAS  CrossRef  Google Scholar 

  • Grimm NB (1988) Role of macroinvertebrates in nitrogen dynamics of a desert stream. Ecology 69:1884–1893

    CrossRef  Google Scholar 

  • Hall R, Thomas S, Gaiser EE (2007) Measuring freshwater primary production and respiration. In: Fahey TJ, Knapp AK (eds) Principles and standards for measuring primary production. Oxford University Press, Oxford, pp 175–203

    CrossRef  Google Scholar 

  • Hall RO (2016) Chapter 4 - Metabolism of streams and rivers: Estimation, controls, and application. In: Jones JB, Stanley EH (eds) Stream ecosystems in a changing environment. Academic Press, Boston, pp 151–180. https://doi.org/10.1016/B978-0-12-405890-3.00004-X

  • Hall RO, Beaulieu JJ (2013) Estimating autotrophic respiration in streams using daily metabolism data. Freshw Sci 32:507–516

    CrossRef  Google Scholar 

  • Hall RO, Hotchkiss ER (2017) Stream metabolism. In: Lamberti GA, Hauer FR (eds) Methods in stream ecology (Third Edition). Academic Press, pp 219–233. https://doi.org/10.1016/B978-0-12-813047-6.00012-7

  • Hall RO, Tank JL, Baker MA et al (2016) Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19:73–86. https://doi.org/10.1007/s10021-015-9918-1

    CAS  CrossRef  Google Scholar 

  • Hall RO, Ulseth AJ (2020) Gas exchange in streams and rivers. Wiley Interdiscip Rev Water 7:e1391

    CrossRef  Google Scholar 

  • Hall RO, Yackulic CB, Kennedy TA et al (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol Oceanogr 60:512–526

    CrossRef  Google Scholar 

  • Hamilton S, Lewis W, Sippel S (1992) Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89:324–330

    CAS  PubMed  CrossRef  Google Scholar 

  • Harjung A, Ejarque E, Battin T et al (2019) Experimental evidence reveals impact of drought periods on dissolved organic matter quality and ecosystem metabolism in subalpine streams. Limnol Oceanogr 64:46–60

    CAS  CrossRef  Google Scholar 

  • Harvey CJ, Peterson BJ, Bowden WB et al (1997) Organic matter dynamics in the Kuparuk River, a tundra river in Alaska, USA. J N Am Benthol Soc 16:18–23

    CrossRef  Google Scholar 

  • Hill BH, Webster JR (1982) Aquatic macrophyte breakdown in an Appalachian river. Hydrobiologia 89:53-59

    Google Scholar 

  • Hill BH, Webster JR (1983) Aquatic macrophyte contribution to the New River organic matter budget. Dynamics of Lotic Systems, Ann Arbor Science, Ann Arbor MI, pp 273-282

    Google Scholar 

  • Hoellein TJ, Bruesewitz DA, Richardson DC (2013) Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol Oceanogr 58:2089–2100

    CAS  CrossRef  Google Scholar 

  • Hood JM, Benstead JP, Cross WF et al (2018) Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Glob Change Biol 24:1069–1084

    CrossRef  Google Scholar 

  • Horgby Å, Boix Canadell M, Ulseth AJ et al (2019) High-resolution spatial sampling identifies groundwater as driver of CO2 dynamics in an alpine stream network. J Geophys Res Biogeo 124:1961–1976

    CAS  CrossRef  Google Scholar 

  • Hotchkiss E, Hall R Jr, Sponseller R et al (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696

    CAS  CrossRef  Google Scholar 

  • Hotchkiss E, Sadro S, Hanson P (2018) Toward a more integrative perspective on carbon metabolism across lentic and lotic inland waters. Limnol Oceanogr Lett 3:57–63

    CrossRef  Google Scholar 

  • Huryn AD, Benstead JP (2019) Seasonal changes in light availability modify the temperature dependence of secondary production in an arctic stream. Ecology 100:e02690

    PubMed  CrossRef  Google Scholar 

  • Huryn AD, Benstead JP, Parker SM (2014) Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95:2826–2839

    CrossRef  Google Scholar 

  • Hynes HBN (1975) The stream and its valley. Verhandlungen der Internationalen Vereinigung fur Limnologie 19:1–15

    Google Scholar 

  • Jones JB, Schade JD, Fisher SG, Grimm NB (1997) Organic matter dynamics in Sycamore Creek, a desert stream in Arizona, USA. J N Am Benthol Soc 16:78–82

    CrossRef  Google Scholar 

  • Junk W, Bayley P, Sparks R (1989) The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Wantzen KM (2004) (2004) The flood pulse concept: new aspects, approaches and applications-an update. Second international symposium on the management of large rivers for fisheries. Food and Agriculture Organization and Mekong River Commission, FAO pp, pp 117–149

    Google Scholar 

  • King D Ball RC (1967) Comparative energetics of a polluted stream. Limnol Oceanogr 12: 27–33

    Google Scholar 

  • Koenig LE, Helton AM, Savoy P et al (2019) Emergent productivity regimes of river networks. Limnol Oceanogr Lett 4:173–181

    CrossRef  Google Scholar 

  • Lake P, Barmuta L, Boulton A et al (1985) Australian streams and Northern Hemisphere stream ecology: comparisons and problems. Proc Ecol Soc Aust 1985:61–82

    Google Scholar 

  • Larsen S, Muehlbauer JD, Marti E (2016) Resource subsidies between stream and terrestrial ecosystems under global change. Glob Change Biol 22:2489–2504. https://doi.org/10.1111/gcb.13182

    CrossRef  Google Scholar 

  • Levi PS, Tank JL, Rüegg J et al (2013) Whole-stream metabolism responds to spawning Pacific salmon in their native and introduced ranges. Ecosystems 16:269–283. https://doi.org/10.1007/s10021-012-9613-4

    CAS  CrossRef  Google Scholar 

  • Lewis WM, Hamilton SK, Rodríguez MA et al (2001) Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. J N Am Benthol Soc 20:241–254

    CrossRef  Google Scholar 

  • Lisboa LK, Thomas S, Moulton TP (2016) Reviewing carbon spiraling approach to understand organic matter movement and transformation in lotic ecosystems. Acta Limnologica Brasiliensia 28

    Google Scholar 

  • Mann KH (1969) The dynamics of aquatic ecosystems. Advanc Ecol Res 6:1-81

    Google Scholar 

  • Masese FO, Salcedo-Borda JS, Gettel GM et al (2017) Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132:1–22

    CAS  CrossRef  Google Scholar 

  • McKnight DM, Tate C (1997) Canada stream: a glacial meltwater stream in Taylor Valley, south Victoria Land, Antarctica. J N Am Benthol Soc 16:14–17

    CrossRef  Google Scholar 

  • McMeans BC, Kadoya T, Pool TK et al (2019) Consumer trophic positions respond variably to seasonally fluctuating environments. Ecology 100:e02570

    PubMed  CrossRef  Google Scholar 

  • Meyer JL, Edwards RT (1990) Ecosystem metabolism and turnover of organic carbon along a blackwater river continuum. Ecology 71:668–677

    CAS  CrossRef  Google Scholar 

  • Mineau MM, Wollheim WM, Buffam I et al (2016) Dissolved organic carbon uptake in streams: a review and assessment of reach-scale measurements. J Geophys Res Biogeo 121:2019–2029

    CAS  CrossRef  Google Scholar 

  • Minshall GW (1978) Autotrophy in stream ecosystems. Bioscience 28:767–771

    CrossRef  Google Scholar 

  • Minshall GW, Cummins KW, Petersen RC et al (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42:1045–1055

    CrossRef  Google Scholar 

  • Mortillaro J-M, Pouilly M, Wach M et al (2015) Trophic opportunism of central Amazon floodplain fish. Freshw Biol 60:1659–1670

    CAS  CrossRef  Google Scholar 

  • Mulholland P, Fellows C, Tank J et al (2001) Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–1517

    CAS  CrossRef  Google Scholar 

  • Naiman RJ (1976) Primary production, standing stock, and export of organic matter in a Mohave Desert thermal stream 1. Limnol Oceanogr 21: 60-73

    Google Scholar 

  • Naiman RJ, Link GL (1997) Organic matter dynamics in 5 subarctic streams, Quebec, Canada. J N Am Benthol Soc 16:33–39

    CrossRef  Google Scholar 

  • Newbold J, Mulholland P, Elwood J et al (1982) Organic carbon spiralling in stream ecosystems. Oikos:266–272

    Google Scholar 

  • Noacco V, Wagener T, Worrall F et al (2017) Human impact on long-term organic carbon export to rivers. J Geophys Res Biogeo 122:947–965

    CAS  CrossRef  Google Scholar 

  • Odum EP (1968) Energy flow in ecosystems: a historical review. Am Zool 8:11–18

    CrossRef  Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 2:85–97

    CrossRef  Google Scholar 

  • Odum HT (1957) Trophic structure and productivity of Silver Springs, Florida. Ecol Monogr 27:55-112

    Google Scholar 

  • Ornes S (2018) Core concept: how does climate change influence extreme weather? Impact attribution research seeks answers. PNAS 115:8232–8235. https://doi.org/10.1073/pnas.1811393115

    CAS  CrossRef  PubMed  Google Scholar 

  • Peterson BJ, Hobbie JE, Corliss TL (1986) Carbon flow in a tundra stream ecosystem. Can J Fish 43:1259–1270

    CrossRef  Google Scholar 

  • Piao S, Liu Q, Chen A et al (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol. https://doi.org/10.1111/gcb.14619

    CrossRef  Google Scholar 

  • Poole GC (2002) Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshw Biol 47:641–660

    CrossRef  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355

    CAS  PubMed  CrossRef  Google Scholar 

  • Raymond PA, Zappa CJ, Butman D et al (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53

    CrossRef  Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J of Eco 72:61–74. https://doi.org/10.2307/2260006

    CrossRef  Google Scholar 

  • Reisinger AJ, Rosi EJ, Bechtold HA et al (2017) Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. Ecosphere 8:e01776

    CrossRef  Google Scholar 

  • Reisinger AJ, Tank JL, Rosi-Marshall EJ et al (2015) The varying role of water column nutrient uptake along river continua in contrasting landscapes. Biogeochemistry 125:115–131. https://doi.org/10.1007/s10533-015-0118-z

    CAS  CrossRef  Google Scholar 

  • Roberts BJ, Mulholland PJ, Hill WR (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    CAS  CrossRef  Google Scholar 

  • Rocher-Ros G, Sponseller RA, Lidberg W et al (2019) Landscape process domains drive patterns of CO2 evasion from river networks. Limnol Oceanogr Lett 4:87–95. https://doi.org/10.1002/lol2.10108

    CAS  CrossRef  Google Scholar 

  • Rodríguez-Castillo T, Estévez E, González-Ferreras AM et al (2019) Estimating ecosystem metabolism to entire river networks. Ecosystems 22:892–911. https://doi.org/10.1007/s10021-018-0311-8

    CAS  CrossRef  Google Scholar 

  • Romeijn P, Comer-Warner SA, Ullah S et al (2019) Streambed organic matter controls on carbon dioxide and methane emissions from streams. Environ Sci Technol 53:2364–2374

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosi-Marshall EJ, Vallis KL, Baxter CV et al (2016) Retesting a prediction of the river continuum concept: autochthonous versus allochthonous resources in the diets of invertebrates. Freshw Sci 35:534–543. https://doi.org/10.1086/686302

    CrossRef  Google Scholar 

  • Savoy P, Appling AP, Heffernan JB, et al. (2019) Metabolic rhythms in flowing waters: An approach for classifying river productivity regimes. Limnol Oceanogr 64:1835-1851

    Google Scholar 

  • Schade JD, Fisher SG (1997) Leaf litter in a Sonoran Desert stream ecosystem. J N Am Benthol Soc 16:612–626

    CrossRef  Google Scholar 

  • Schramm HL, Eggleton MA (2006) Applicability of the flood-pulse concept in a temperate floodplain river ecosystem: thermal and temporal components. River Res Appl 22:543–553

    CrossRef  Google Scholar 

  • Siders AC, Larson DM, Rüegg J et al (2017) Probing whole-stream metabolism: influence of spatial heterogeneity on rate estimates. Freshw Biol 62:711–723

    CrossRef  Google Scholar 

  • Sinsabaugh RL (1997) Large-scale trends for stream benthic respiration. J N Am Benthol Soc 16:119–122

    CrossRef  Google Scholar 

  • Smock LA (1997) Organic matter dynamics in Buzzards Branch, a blackwater stream in Virginia, USA. J N Am Benthol Soc 16:54–58

    CrossRef  Google Scholar 

  • Song C, Dodds WK, Rüegg J et al (2018) Continental-scale decrease in net primary productivity in streams due to climate warming. Nat Geosci 11:415

    CAS  CrossRef  Google Scholar 

  • Song C, Dodds WK, Trentman MT et al (2016) Methods of approximation influence aquatic ecosystem metabolism estimates. Limnol Oceanogr Methods 14:557–569

    CrossRef  Google Scholar 

  • Staehr PA, Testa JM, Kemp WM et al (2012) The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquat Sci 74:15–29

    CrossRef  Google Scholar 

  • Stegen JC, Johnson T, Fredrickson JK et al (2018) Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nat Commun 9:585

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Stott P (2016) How climate change affects extreme weather events. Science 352:1517–1518. https://doi.org/10.1126/science.aaf7271

    CAS  CrossRef  PubMed  Google Scholar 

  • Sutfin NA, Wohl EE, Dwire KA (2016) Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf Process Landf 41:38–60

    CrossRef  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146

    CrossRef  Google Scholar 

  • Tank SE, Fellman JB, Hood E et al (2018) Beyond respiration: controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol Oceanog Lett 3:76–88

    CrossRef  Google Scholar 

  • Thomas SA, Royer TV, Snyder EB et al (2005) Organic carbon spiraling in an Idaho river. Aquat Sci 67:424–433

    CAS  CrossRef  Google Scholar 

  • Thorp JH, Alexander J, James E, Bukaveckas BL et al (1998) Responses of Ohio River and Lake Erie dreissenid molluscs to changes in temperature and turbidity. Can J Fish Aquat Sci 55:220–229

    CrossRef  Google Scholar 

  • Thorp JH, Delong MD (1994) The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 94:305–308

    CrossRef  Google Scholar 

  • Thorp JH, Delong MD (2002) Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96:543–550

    CrossRef  Google Scholar 

  • Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147

    CrossRef  Google Scholar 

  • Tilly, L. J. (1968) The structure and dynamics of Cone Spring. Eco Mono 38: 169-197

    Google Scholar 

  • Tockner K, Malard F, Ward J (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883

    CrossRef  Google Scholar 

  • Tomanova S, Tedesco PA, Campero M et al (2007) Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept. Archiv für Hydrobiologie 170:233–241

    CrossRef  Google Scholar 

  • Tonin AM, Gonçalves JF, Bambi P et al (2017) Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Sci Rep 7:10799. https://doi.org/10.1038/s41598-017-10576-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tromboni F, Dodds WK, Neres Lima V et al. (2017) Heterogeneity and scaling of photosynthesis, respiration, and nitrogen uptake in three Atlantic Rainforest streams. Ecosphere 8

    Google Scholar 

  • Uehlinger U, Naegeli MW (1998) Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. J N Am Benthol Soc 17:165-178

    Google Scholar 

  • Ulseth AJ, Bertuzzo E, Singer GA et al (2018) Climate-induced changes in spring snowmelt impact ecosystem metabolism and carbon fluxes in an alpine stream network. Ecosystems 21:373–390

    CAS  CrossRef  Google Scholar 

  • Ulseth AJ, Hall RO, Canadell MB et al (2019) Distinct air–water gas exchange regimes in low-and high-energy streams. Nat Geosci:1

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW et al (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137. https://doi.org/10.1139/f80-017

    CrossRef  Google Scholar 

  • Wallace JB, Cuffney T, Eggert S et al (1997) Stream organic matter inputs, storage, and export for Satellite Branch at Coweeta Hydrologic Laboratory, North Carolina, USA. J N Am Benthol Soc 16:67–74

    CrossRef  Google Scholar 

  • Wanner S, Ockenfeld K, Brunke M et al (2002) The distribution and turnover of benthic organic matter in a lowland river: influence of hydrology, seston load and impoundment. River Res Appl 18:107–122

    CrossRef  Google Scholar 

  • Ward J, Stanford J (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine TD and Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Ann. Arbor, pp 29–42

    Google Scholar 

  • Ward J, Stanford J (1995) The serial discontinuity concept: extending the model to floodplain rivers. Reg Rivers Resear Manag 10:159–168

    CrossRef  Google Scholar 

  • Webster J, Golladay S, Benfield E et al (1990) Effects of forest disturbance on particulate organic matter budgets of small streams. J N Am Benthol Soc 9:120–140

    CrossRef  Google Scholar 

  • Webster J, Meyer JL (1997) Organic matter budgets for streams: a synthesis. J N Am Benthol Soc 16:141–161

    CrossRef  Google Scholar 

  • Webster J, Wallace J, Benfield E (1995) Organic processes in streams of the eastern United States. In: Cushing CE, Cummins KW, Minshall GW (eds) River and stream ecosystems-ecosystems of the world. University of California Press, Berkeley, pp 117–187

    Google Scholar 

  • Webster JR (2007) Spiraling down the river continuum: stream ecology and the U-shaped curve. J N Am Benthol Soc 26:375–389. https://doi.org/10.1899/06-095.1

    CrossRef  Google Scholar 

  • Webster JR, Benfield EF, Ehrman TP et al (1999) What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshw Biol 41:687–705

    CrossRef  Google Scholar 

  • Welcomme RL (1979) Fisheries ecology of floodplain rivers [tropics]. Longman, Rome

    Google Scholar 

  • Wetzel RG (1983) Limnology, 2end edn. Harcourt Brace, Fort Worth

    Google Scholar 

  • Winemiller KO, Flecker AS, Hoeinghaus DJ (2010) Patch dynamics and environmental heterogeneity in lotic ecosystems. J N Am Benthol Soc 29:84–99. https://doi.org/10.1899/08-048.1

    CrossRef  Google Scholar 

  • Winterbourn MJ, Rounick J, Cowie B (1981) Are New Zealand stream ecosystems really different? N Z J Mar Freshw Res 15:321–328

    CrossRef  Google Scholar 

  • Wohl E, Hall RO, Lininger KB et al (2017) Carbon dynamics of river corridors and the effects of human alterations. Ecol Monogr 87:379–409

    CrossRef  Google Scholar 

  • Young R, Huryn AD (1997) Longitudinal patterns of organic matter transport and turnover along a New Zealand grassland river. Freshw Biol 38:93–107

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Allan .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Allan, J.D., Castillo, M.M., Capps, K.A. (2021). Carbon Dynamics and Stream Ecosystem Metabolism. In: Stream Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-61286-3_14

Download citation