Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 413 Accesses

Abstract

Climate change is one of the world’s most pressing issues, and most climate scientists agree that the Earth temperature is on track to increase by more than two degrees above pre-industrial levels—thereby inducing flooding of low-lying countries and extreme weather conditions throughout the world, among other severe and irreversible effects—if countries do not reduce their fossil fuels consumption [1]. That is why in the 2015 United Nations Climate Change Conference in Paris (also known as the Paris Agreement), the world leaders have agreed to accelerate the “reduction of global greenhouse gas emissions” through increased adoption of renewable energies [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Inductive loads are usually found in any type of wound coil, or induction motors, which are common load for industrial customers, whereas capacitive loads are typically capacitor banks.

  2. 2.

    On-grid PV system, based on its capacity and location where it is installed, can be divided into residential PV (1–10s of kWp, typically installed on residential rooftops); commercial/industrial PV (10s of kWp to approximately 1 MWp, typically installed on rooftop of commercial/industrial buildings); and utility-scale PV (\(\ge \)5 MWp, typically ground-mounted PV installed away from the load centres).

  3. 3.

    The full name of the standard is IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, but it will be referred to IEEE Standard 1547 in the text for brevity.

  4. 4.

    Singapore electricity market is operating on a half-hour basis [63].

  5. 5.

    The weather forecast data employed in this thesis have been mainly generated by Hadrien Verbois from Solar Energy Research Institute of Singapore (SERIS), and by Wenjie Zhang from Electrical and Computer Engineering Department, National University of Singapore (NUS).

References

  1. CBC News (2015) How a 2C temperature increase could change the planet. https://www.cbc.ca/news2/interactives/2degrees/. Visited on 09/08/2019

  2. United Nations (2015) Adoption of the Paris agreement. Tech Rep, p 32

    Google Scholar 

  3. Blakers A (2017) Solar is now the most popular form of new electricity generation worldwide. http://theconversation.com/solaris-now-the-most-popular-form-of-new-electricity-generation-worldwide-81678. Visited on 03/29/2019

  4. Hill JS (2018) Global solar market installed 98.9 gigawatts in 2017. https://cleantechnica.com/2018/03/19/global-solar-market-installed-98-9-gigawatts-in-2017/7B7D0A. Visited on 03/29/2019

  5. Saretta E, Caputo P, Frontini F (2019) A review study about energy renovation of building facades with BIPV in urban environment. Sustain Cities Soc 44:343–355. ISSN 22106707. https://doi.org/10.1016/j.scs.2018.10.002

  6. World Bank Group (2019) ESMAP, and SERIS, Where sun meets water: floating solar market report. World Bank. Washington, Tech Rep, DC

    Google Scholar 

  7. Luerssen C, Gandhi O, Reindl T, Sekhar C, Cheong D (2019) Levelised cost of storage (LCOS) for solar-pv-powered cooling in the tropics, Appl Energy 242(February):640–654, ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2019.03.133

  8. Luerssen C, Gandhi O, Reindl T, Sekhar C, Cheong D (2020) Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications, Appl Energy 273(May):115–145. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2020.115145

  9. Rodríguez-Gallegos CD, Gandhi O, Yacob Ali JM, Shanmugam V, Reindl T, Panda SK (2018) On the grid metallization optimization design for monofacial and bifacial Si-based PV modules for real-world conditions, IEEE J Photovolt 1–7. https://doi.org/10.1109/JPHOTOV.20182882188

  10. Rodríguez-Gallegos CD, Bieri M, Gandhi O, Singh JP, Reindl T, Panda S (2018) Monofacial vs bifacial Si-based PV modules: which one is more cost effective. Sol Energy 176(October):412–438, ISSN 0038-092X. https://doi.org/10.1016/j.solener.2018.10.012

  11. Liu H, Rodríguez-Gallegos CD, Liu Z, Buonassisi T, Reindl T, Peters IM (2020) A worldwide theoretical comparison of outdoor potential for various silicon-based tandem module architecture. Cell Rep Phys Sci 1(4):100 037. ISSN 2666-3864. https://doi.org/10.1016/j.xcrp.2020.100037

  12. Rodríguez-Gallegos CD, Liu H, Gandhi O, Singh JP, Krishnamurthy V, Kumar A, Stein JS, Wang S, Li L, Reindl T, Peters IM (2020) Global technoeconomic performance of bifacial and tracking photovoltaic systems. Joule 1–28. ISSN 2542-4351. https://doi.org/10.1016/j.joule.2020.05.005

  13. Rodríguez-Gallegos CD, Gandhi O, Panda SK, Reindl T (2020) On the PV tracker performance: tracking the sun versus tracking the best orientation. IEEE J Photovolt 1–7. ISSN 2156-3381. https://doi.org/10.1109/JPHOTOV.2020.3006994

  14. Gandhi O, Srinivasan D (eds) (2020) Sustainable energy solutions for remote areas in the tropics. Series green energy and technology. Cham: Springer International Publishing, ISBN 978-3-030-41951-6. https://doi.org/10.1007/978-3-030-41952-3

  15. PVPS IEA (2016) Trends 2016 in photovoltaic applications. International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS), pp 1–30 Tech. Rep

    Google Scholar 

  16. PVPS IEA (2018) 2018 snapshot of global photovoltaic markets, International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS), pp 1–33. Tech. Rep

    Google Scholar 

  17. PVPS IEA (2019) 2019 snapshot of global photovoltaic markets. International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS), pp 1–35. Tech. Rep

    Google Scholar 

  18. PVPS IEA (2020) Snapshot of global PV markets 2020, International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS), pp 33–47. Tech. Rep

    Google Scholar 

  19. Gandhi O, Kumar DS, Rodríguez-Gallegos CD, Srinivasan D (2020) Review of power system impacts at high PV penetration part I: factors limiting PV penetration. Solar Energy

    Google Scholar 

  20. Power Systems Engineering Research Center (PSERC) (2001) Reactive power support services in electricity markets. Tech Rep

    Google Scholar 

  21. Wandhare RG, Agarwal V (2014) Reactive power capacity enhancement of a PV-grid system to increase PV penetration level in smart grid scenario. IEEE Trans Smart Grid 5(4):1845–1854, ISSN 1949-3053. https://doi.org/10.1109/TSG.2014.2298532

  22. Wu L, Zhao Z, Liu J (2007) A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation. IEEE Trans Energy Convers 22(4):881–886, ISSN 0885-8969. https://doi.org/10.1109/TEC.2007.895461

  23. Cagnano A, De Tuglie E, Liserre M, Mastromauro RA (2011) Online optimal reactive power control strategy of PV inverters. IEEE Trans Ind Electron 58(10):4549–4558. ISSN 0278-0046. https://doi.org/10.1109/TIE.2011.2116757

  24. Kekatos V, Wang G, Conejo AJ, Giannakis GB (2014) Stochastic reactive power management in microgrids with renewables. IEEE Trans Power Syst PP (99):1–10. ISSN 0885-8950. https://doi.org/10.1109/TPWRS.2014.2369452. arXiv: 1409.6758

  25. Zhang L, Tang W, Liang J, Cong P, Cai Y (2016) Coordinated day-ahead reactive power dispatch in distribution network based on real power forecast errors. IEEE Trans Power Syst 31(3):2472–2480. ISSN 0885-8950. https://doi.org/10.1109/TPWRS.2015.2466435

  26. Yang HT, Liao JT MF-APSO-based multiobjective optimization for PV system reactive power regulation. IEEE Trans Sustain Energy 6(4):1346–1355. ISSN 19493029. https://doi.org/10.1109/TSTE.2015.2433957

  27. Su X, Masoum MA, Wolfs PJ (2014) Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced fourwire LV distribution networks. IEEE Trans Sustain Energy 5(3):967–977. ISSN 1949-3029. https://doi.org/10.1109/TSTE.2014.2313862

  28. Sousa T, Morais H, Vale Z, Castro R (2015) A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context. Energy 85:236–250. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2015.03.077

  29. Ding T, Li C, Yang Y, Jiang J, Bie Z, Blaabjerg F, A two-stage robust optimization for centralized-optimal dispatch of photovoltaic inverters in active distribution networks. IEEE Trans Sustain Energy 8(2):744–754. ISSN 1949-3029. https://doi.org/10.1109/TSTE.2016.2605926

  30. Ding T, Liu S, Yuan W, Bie Z, Zeng B (2016) A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks. IEEE Trans Sustain Energy 7(1):301–311. ISSN 1949-3029. https://doi.org/10.1109/TSTE.2015.2494587

  31. Ziadi Z, Taira S, Oshiro M, Funabashi T (2014) Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation. IEEE Trans Smart Grid 5(5):2350–2359. ISSN 1949-3053. https://doi.org/10.1109/TSG.2014.2323969

  32. Kim YJ, Kirtley JL, Norford LK (2015) Reactive power ancillary service of synchronous DGs in coordination with voltage control devices. IEEE Trans Smart Grid 8(2):515–527. ISSN 1949-3053. https://doi.org/10.1109/TSG.2015.2472967

  33. Chen S, Hu W, Chen Z (2016) Comprehensive cost minimization in distribution networks using segmented-time feeder reconfiguration and reactive power control of distributed generators. IEEE Trans Power Syst 31(2):983–993. ISSN 0885-8950. https://doi.org/10.1109/TPWRS.2015.2419716

  34. Mohseni-Bonab SM, Rabiee A (2016) Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation. IET Gener Transm Distrib 11:815–829. ISSN 1751-8687. https://doi.org/10.1049/iet-gtd.2016.1545

  35. Yang D, Sharma V, Ye Z, Lim LI, Zhao L, Aryaputera AW (2015) Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy 81:111–119. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2014.11.082

  36. Yang Y, Wu W (2018) A distributionally robust optimization model for realtime power dispatch in distribution networks. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2018.2834564

    Article  Google Scholar 

  37. Zhu T, Luo W, Bu C, Yue L (2016) Accelerate population-based stochastic search algorithms with memory for optima tracking on dynamic power systems. IEEE Trans Power Syst 31(1):268–277. ISSN 0885-8950. https://doi.org/10.1109/TPWRS.2015

  38. Weedy BM, Cory B, Jenkins N, Ekanayake J, Strbac G (2012) Electric Power Systems, 5th edn. Wiley, p 513. ISBN 9780470682685

    Google Scholar 

  39. Grainger JJ, Stevenson WD (1994) Power system analysis. McGraw-Hill. ISBN 0070612935. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf

  40. Kundur P (1994) Power system stability and control, series. The EPRI Power System Engineering. McGraw-Hill. ISBN 978-0070359581

    Google Scholar 

  41. UK Power Networks (2016) Use of system charging statement. Tech. Rep. UK Power Networks

    Google Scholar 

  42. Pires DF, Antunes CH, Martins AG (2012) NSGA-II with local search for a multi-objective reactive power compensation problem. Int J Electr Power Energy Syst 43(1):313–324. ISSN 01420615. https://doi.org/10.1016/j.ijepes.2012.05.024

  43. Stott B, Alsac O (1974) Fast decoupled load flow. IEEE Trans Power Apparatus Syst PAS-93(3):859–869. https://doi.org/10.1109/TPAS.1974.293985

  44. Hanger J (2003) Reactive power and blackout. https://www.energycentral.com/c/tr/reactive-power-and-blackout. Visited on 04/07/2019

  45. Parmar J (2011) How reactive power is helpful to maintain a system healthy. https://electrical-engineering-portal.com/howreactive-power-is-helpful-to-maintain-a-system-healthy. Visited on 04/07/2019

  46. Bhattacharya K, Zhong J (2001) Reactive power as an ancillary service. IEEE Trans Power Syst 16(2):294–300

    Google Scholar 

  47. IEA (2019) The California duck curve, Paris. https://www.iea.org/data-and-statistics/charts/the-california-duck-curve. Visited on 04/28/2020

  48. CAISO (2016) Fast facts: CAISO duck curve

    Google Scholar 

  49. Porter K, Fink S, Rogers J, Mudd C, Buckley M, Clark C, Hinkle G (2012) PJM renewable integration study: review of industry practice and experience in the integration of wind and solar generation. GE Energy Tech Rep

    Google Scholar 

  50. Riesz J, Macgill I (2013) Frequency control ancillary services: is Australia a model market for renewable integration? In: Proceedings of the 12th international workshop on large-scale integration of wind power into power systems, London

    Google Scholar 

  51. Energy Market Authority (2018) Intermittency pricing mechanism for intermittent generation sources in the National Electricity Market of Singapore: final determination paper. Energy Market Authority, Singapore, Tech Rep

    Google Scholar 

  52. Ellis A, Nelson R, Engeln EV, Walling R, Mcdowell J, Casey L, Seymour E, Peter W, Barker C, Kirby B (2012) Reactive power interconnection requirements for PV and wind plants—recommendations to NERC, Sandia National Laboratories, Albuquerque. Tech Rep SAND2012-1098

    Google Scholar 

  53. National Renewable Energy Laboratory (2014) Advanced inverter functions to support high levels of distributed solar policy and regulatory the need for advanced, NREL Technical Report NREL/TP-5200-57991, pp 1–8

    Google Scholar 

  54. Bernards R, Morren J, Slootweg JG (2014) Maximum PV-penetration in lowvoltage cable networks. In: 7th IEEE young researchers symposium. IEEE, Ghent, Belgium, pp 1–5

    Google Scholar 

  55. Hoke A, Butler R, Hambrick J, Kroposki B (2013) Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders. IEEE Trans Sustain Energy 4(2):350–357. ISSN 1949-3029. https://doi.org/10.1109/TSTE.2012.2225115

  56. Kumar DS, Gandhi O, Rodríguez-Gallegos CD, Srinivasan D (2020) Review of power system impacts at high PV penetration part II: potential solutions and the way forward. Sol Energy Under Second Rev

    Google Scholar 

  57. IEEE standards Coordinating Committee (2014) 21, 1547 IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems Amendment 1. New York

    Google Scholar 

  58. Southern California Edison (2017) Electric Rule 21

    Google Scholar 

  59. SMA, SMA shifts the phase. https://www.sma-australia.com.au/partners/knowledgebase/sma-shifts-the-phase.html. Visited on 04/05/2019

  60. Huawei (2018) Smart string inverter sun2000-105ktl-h1, Shenzhen. http://solar.huawei.com/en-GB/download?p=7B

  61. IEEE Standards Coordinating Committee (2018) IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces, New York. IEEE. ISBN 9781504446396

    Google Scholar 

  62. EMC (2016) Use of system charges. https://www.mypower.com.sg/documents/ts-usc.pdf. Visited on 04/01/2018

  63. EMC (2018) Energy market price information. https://www.emcsg.com/marketdata/priceinformation. Visited on 04/01/2018

  64. Gabash A, Li P (2012) Active-reactive optimal power flow in distribution networks with embedded generation and battery storage. IEEE Trans Power Syst 27(4):2026–2035. ISSN 08858950. https://doi.org/10.1109/TPWRS.2012.2187315.arXiv: 9605103 [cs]

  65. Liang RH, Wang JC, Chen YT, Tseng WT (2015) An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration, Int J Electr Power Energy Syst 64 1088–1097. ISSN 01420615. https://doi.org/10.1016/j.ijepes.2014.09.008

  66. Samimi A, Kazemi A, Siano P (2015) Economic-environmental active and reactive power scheduling of modern distribution systems in presence of wind generations: a distribution market-based approach. Energy Convers Manage 106 495–509. ISSN 01968904. https://doi.org/10.1016/j.enconman.2015.09.070

  67. Lee KY, Park YM, Ortiz JL (1985) A united approach to optimal real and reactive power dispatch. IEEE Power Eng Rev PER-5(5):42–43. ISSN 02721724. https://doi.org/10.1109/MPER.1985.5526580

  68. Saravanan B, Das S, Sikri S, Kothari DP (2013) A solution to the unit commitment problem-a review. Front Energ 7(2):223–236. ISSN 20951701. https://doi.org/10.1007/s11708-013-0240-3

  69. Gandhi O, Rodríguez-Gallegos CD, Srinivasan D (2016) Review of optimization of power dispatch in renewable energy system. In: 2016 IEEE Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne. IEEE, pp 250–257. ISBN 978-1-5090-4303-3. https://doi.org/10.1109/ISGT-Asia.2016.7796394

  70. Baños R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J (2011) Optimization methods applied to renewable and sustainable energy: a review. Renew Sustain Energy Rev 15(4):1753–1766. ISSN 13640321. https://doi.org/10.1016/j.rser.2010.12.008

  71. Wu W, Hu Z, Song Y (2016) A new method for opf combining interior point method and filled function method. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp 1–5. IEEE. ISBN 978-1-5090-4168-8. https://doi.org/10.1109/PESGM.2016.7741321

  72. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press. ISBN 9780521833783

    Google Scholar 

  73. Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3rd edn. Wiley. ISBN 978-0-471-78777-8

    Google Scholar 

  74. Sivanandam S, Deepa S (2008) Introduction to genetic algorithms, Springer, p 453. ISBN 9783540731894. https://doi.org/10.1007/978-3-540-73190-0

  75. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948. ISSN 19353812. https://doi.org/10.1109/ICNN.1995.488968

  76. Logenthiran T, Srinivasan D, Shun TZ (2012) Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3):1244–1252. ISSN 19493053. https://doi.org/10.1109/TSG.2012.2195686

  77. Talbi EG (2009) Metaheuristics: From design to implementation. Wiley. ISBN 978-0-470-27858-1

    Google Scholar 

  78. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press

    Google Scholar 

  79. Ahn C, Peng H (2013) Decentralized voltage control to minimize distribution power loss of microgrids. IEEE Trans Smart Grid 4(3):1297–1304. ISBN 1949-3053. https://doi.org/10.1109/TSG.2013.2248174

  80. Arnold DB, Negrete-Pincetic M, Sankur MD, Auslander DM, Callaway DS (2016) Model-free optimal control of var resources in distribution systems: an extremum seeking approach. IEEE Trans Power Syst 31(5):3583–3593. ISSN 08858950. https://doi.org/10.1109/TPWRS.2015.2502554

  81. Bolognani S, Carli R, Cavraro G, Zampieri S (2015) Distributed reactive power feedback control for voltage regulation and loss minimization, IEEE Trans Autom Control 60(4):966–981. ISSN 00189286. https://doi.org/10.1109/TAC.2014.2363931 arXiv 1303.7173

  82. Šulc P, Backhaus S, Chertkov M (2014) Optimal distributed control of reactive power via the alternating direction method of multipliers. IEEE Trans Energy Convers 29(4):968–977. ISSN 08858969. https://doi.org/10.1109/TEC.2014.2363196. arXiv 1310.5748

  83. Dall’Anese E, Dhople SV, Giannakis GB (2016) Photovoltaic inverter controllers seeking AC optimal power flow solutions. IEEE Trans Power Syst 31(4):2809–2823, issn: 08858950. https://doi.org/10.1109/TPWRS.2015.2454856. arXiv: 1501.0188

  84. Zhang W, Liu W, Wang X, Liu L, Ferrese F (2014) Distributed multiple agent system based online optimal reactive power control for smart grids. IEEE Trans Smart Grid 5(5):2421–2431, issn: 19493053. https://doi.org/10.1109/TSG.2014.2327478

  85. Erseghe T (2014) Distributed optimal power flow using ADMM. IEEE Trans Power Syst 29(5):2370–2380. ISSN 08858950. https://doi.org/10.1109/TPWRS.2014.2306495

  86. Zheng W, Wu W, Zhang B, Sun H, Liu Y (2016) A fully distributed reactive power optimization and control method for active distribution networks. IEEE Trans Smart Grid 7(2):1021–1033. ISSN 19493053. https://doi.org/10.1109/TSG.2015.2396493

  87. Savier JS, Das D (2007) Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans Power Delivery 22(4):2473–2480. ISSN 08858977. https://doi.org/10.1109/TPWRD.2007.905370

  88. Zhang D, Fu Z, Zhang L (2007) An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr Power Syst Res 77(5-6):685–694. ISSN 03787796. https://doi.org/10.1016/j.epsr.2006.06.005

  89. Stetz T, Rekinger M, Theologitis I (2014) Transition from uni-directional to bi-directional distribution grids. International Energy Agency, Kassel, Tech Rep, p 154

    Google Scholar 

  90. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Srinivasan D, Reindl T (2016) Continuous optimization of reactive power from PV and EV in distribution system, In: 2016 IEEE innovative smart grid technologies—Asia (ISGT-Asia), Melbourne: IEEE, pp 281–287. ISBN 978-1-5090-4303-3. https://doi.org/10.1109/ISGT-Asia.2016.7796399

  91. Gandhi O, Rodríguez-Gallegos CD, Zhang W, Srinivasan D, Reindl T (2018) Economic and technical analysis of reactive power provision from distributed energy resources in microgrids. Appl Energy 210:827–841. ISSN 03062619. https://doi.org/10.1016/j.apenergy.2017.08.154

  92. Gandhi O, Srinivasan D, Rodríguez-Gallegos CD, Reindl T, Competitiveness of reactive power compensation using PV inverter in distribution system. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, pp 1–6. IEEE. ISBN 978-1-5386-1953-7. https://doi.org/10.1109/ISGTEurope.2017.8260238

  93. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Bieri M, Reindl T, Srinivasan D (2018) Analytical approach to reactive power dispatch and energy arbitrage in distribution systems with DERs. IEEE Trans Power Syst 33(6):6522–6533. ISSN 0885-8950. https://doi.org/10.1109/TPWRS.2018.2829527

  94. Gandhi O, Rodríguez-Gallegos CD, Gorla NBY, Bieri M, Reindl T, Srinivasan D (2019) Reactive power cost from PV inverters considering inverter lifetime assessment. IEEE Trans Sustain Energy 10(2):738–747. ISSN 1949-3029. https://doi.org/10.1109/TSTE.2018.2846544

  95. Gandhi O, Rodríguez-Gallegos CD, Reindl T, Srinivasan D (2018) Competitiveness of PV inverter as a reactive power compensator considering inverter lifetime reduction. Energy Procedia 150:74–82. ISSN 18766102. https://doi.org/10.1016/j.egypro.2018.09.005

  96. Gandhi O, Rodriguez-Gallegos CD, Reindl T, Srinivasan D (2018) Locally determined voltage droop control for distribution systems. In: 2018 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore, pp 425–429. IEEE ISBN 978-1-5386-4291-7. https://doi.org/10.1109/ISGT-Asia.2018.8467784

  97. Gandhi O, Zhang W, Rodríguez-Gallegos CD, Verbois H, Sun H, Reindl T, Srinivasan D (2020) Local reactive power dispatch optimisation minimising global objectives. Appl Energy 262. ISSN 03062619. https://doi.org/10.1016/j.apenergy.2020.114529

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktoviano Gandhi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandhi, O. (2021). Introduction. In: Reactive Power Support Using Photovoltaic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-61251-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61251-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61250-4

  • Online ISBN: 978-3-030-61251-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics