Skip to main content

Mining Latent Features of Knowledge Graphs for Predicting Missing Relations

  • Conference paper
  • First Online:
Book cover Knowledge Engineering and Knowledge Management (EKAW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12387))

  • 551 Accesses

Abstract

Knowledge Graphs (KGs) model statements as head-relation-tail triples. Intrinsically, KGs are assumed incomplete especially when knowledge is represented under the Open World Assumption. The problem of KG completeness aims at identifying missing values. While some approaches focus on predicting relations between pairs of known nodes in a graph, other solutions have studied the problem of predicting missing entity properties or relations even in the presence of unknown tails. In this work, we address the latter research problem: for a given head entity in a KG, obtain the set of relations which are missing for the entity. To tackle this problem, we present an approach that mines latent information about head entities and their relations in KGs. Our solution combines in a novel way, state-of-the-art techniques from association rule learning and community detection to discover latent groups of relations in KGs. These latent groups are used for predicting missing relations of head entities in a KG. Our results on ten KGs show that our approach is complementary state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These are DBpedia- and Wikipedia-specific relations to denote information about the Wikipedia page and the class of an entity, respectively.

References

  1. Acosta, M., Simperl, E., Flöck, F., Vidal, M.: Enhancing answer completeness of SPARQL queries via crowdsourcing. J. Web Semant. 45, 41–62 (2017)

    Article  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB 1994, pp. 487–499. Morgan Kaufmann Publishers Inc. (1994)

    Google Scholar 

  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of ACM SIGMOD, pp. 1247–1250. ACM (2008)

    Google Scholar 

  5. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  7. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  8. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: Amie: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of WWW, pp. 413–422. ACM (2013)

    Google Scholar 

  9. Liu, Y., Liao, W.k., Choudhary, A.: A fast high utility itemsets mining algorithm. In: Proceedings of UBDM 2005, pp. 90–99. ACM (2005)

    Google Scholar 

  10. Mihindukulasooriya, N., Rashid, M.R.A., Rizzo, G., García-Castro, R., Corcho, O., Torchiano, M.: RDF shape induction using knowledge base profiling. In: Proceedings of ACM SAC (SAC 2018), pp. 1952–1959. Association for Computing Machinery, New York (2018)

    Google Scholar 

  11. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  12. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. 98(2), 404–409 (2001)

    Article  MathSciNet  Google Scholar 

  13. Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE TKDE 15(1), 57–69 (2003)

    MathSciNet  Google Scholar 

  14. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.: Completeness-aware rule learning from knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_30

    Chapter  Google Scholar 

  15. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  16. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    Article  Google Scholar 

  17. Rebhi, W., Yahia, N.B., Ben Saoud, N.B.: Hybrid modeling approach for contextualized community detection in multilayer social network. Procedia Comput. Sci. 112(C), 673–682 (2017)

    Article  Google Scholar 

  18. Tran, M.D., d’Amato, C., Nguyen, B.T., Tettamanzi, A.G.B.: An evolutionary algorithm for discovering multi-relational association rules in the semantic web. In: Proceedings of GECCO (GECCO 2017), pp. 513–520. ACM, New York (2017)

    Google Scholar 

  19. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of ICML, pp. 2071–2080. JMLR.org (2016)

    Google Scholar 

  20. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Weller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weller, T., Dillig, T., Acosta, M., Sure-Vetter, Y. (2020). Mining Latent Features of Knowledge Graphs for Predicting Missing Relations. In: Keet, C.M., Dumontier, M. (eds) Knowledge Engineering and Knowledge Management. EKAW 2020. Lecture Notes in Computer Science(), vol 12387. Springer, Cham. https://doi.org/10.1007/978-3-030-61244-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61244-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61243-6

  • Online ISBN: 978-3-030-61244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics