Skip to main content

An Edge Focused Distributed Shared Memory

  • Conference paper
  • First Online:
Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2020)

Abstract

Edge computing proposes access to largely unused computational resources without the added cost of the latency between the user and the Cloud. To take advantage of it we designed and implemented an abstraction layer compatible with standard JavaScript that builds a distributed shared memory on top of any existing web browser, like the ones present in smartphones or tablets, and a cloud server, enabling developers to use existing application code and enhance it by enabling collaboration between those devices. The synchronization mechanism supports mixed consistency, preferring eventual consistency but providing a stronger serializability when required, allowing the developers to tune it to their specific needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  2. Soneoka, T., Ibaraki, T.: Logically instantaneous message passing in asynchronous distributed systems. IEEE Trans. Comput. 43(5), 513–527 (1994)

    Article  Google Scholar 

  3. Protic, J., Tomasevic, M., Milutinovic, V.: Distributed shared memory: concepts and systems. IEEE Parallel Distrib. Technol.: Syst. Appl. 4(2), 63–71 (1996)

    Article  Google Scholar 

  4. Nitzberg, B., Lo, V.: Distributed shared memory: a survey of issues and algorithms. IEEE Comput. 24(8), 52–60 (1991)

    Article  Google Scholar 

  5. Vasava, H.D., Rathod, J.M.: A survey of software based Distributed Shared Memory (DSM) implementation methodologies for multiprocessor environments. Int. J. Innov. Res. Sci. Eng. Technol. 2(7), 3055–3060 (2013)

    Google Scholar 

  6. Standard ECMA-262, ECMAScript Language Specification. http://www.ecma-international.org/publications/standards/Ecma-262.htm. Accessed 11 Nov 2019

  7. Saito, Y., Shapiro, M.: Replication: Optimistic Approaches. HP Labs Technical Reports (2002)

    Google Scholar 

  8. Haas, A., et al.: Bringing the web up to speed with WebAssembly. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, vol. 52, no. 6, pp. 185–200 (2017)

    Google Scholar 

  9. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and beyond. Queue 11(3), 20 (2013)

    Article  Google Scholar 

  10. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A Comprehensive Study of Convergent and Commutative (2011)

    Google Scholar 

  11. Almeida, P.S., Shoker, A., Baquero, C.: Efficient state-based CRDTs by delta-mutation. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 62–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26850-7_5

    Chapter  Google Scholar 

  12. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based CRDTs operation-based. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 126–140. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43352-2_11

    Chapter  Google Scholar 

  13. Kleppmann, M., Beresford, A.R.: A conflict-free replicated JSON datatype. IEEE Trans. Parallel Distrib. Syst. 28(10), 2733–2746 (2017)

    Article  Google Scholar 

  14. Roh, H.-G., Jeon, M., Kim, J.-S., Lee, J.: Replicated abstract data types: building blocks for collaborative applications. J. Parallel Distrib. Comput. 71(3), 354–368 (2011)

    Article  Google Scholar 

  15. Patinge, O., Karkhanis, V., Barapatre, A.: Inadequacies of CAP theorem. Int. J. Comput. Appl. 151(10), 18–20 (2016)

    Google Scholar 

  16. Fielding, R., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, RFC 7232, June, 2014

    Google Scholar 

  17. S5: A Semantics for Today’s JavaScript, 11 November 2011. http://blog.brownplt.org/2011/11/11/s5-javascript-semantics.html. Accessed 5 Feb 2020

  18. Loring, M.C., Marron, M., Leijen, D.: Semantics of asynchronous JavaScript. SIGPLAN Not. 52(11), 51–62 (2017)

    Article  Google Scholar 

  19. Zakas, N.C.: Understanding ECMAScript 6: The Definitive Guide for JavaScript Developers (2016). https://amazon.com/understanding-ecmascript-definitive-javascript-developers/dp/1593277571. Accessed 5 Nov 2019

  20. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript, pp. 126–150. arXiv: Programming Languages (2010)

    Google Scholar 

  21. Teragni, M.: Hive project’s Github Repository. https://github.com/HiveProject/hiveproject.github.io/tree/master/Firebase. Accessed 25 Mar 2020

  22. Bhardwaj, N.D.: Comparative study of CouchDB and MongoDB – NoSQL document oriented databases. Int. J. Comput. Appl. 136(3), 24–26 (2016)

    MathSciNet  Google Scholar 

  23. MariaDB 10.0.0 Release Notes. https://mariadb.com/kb/en/mariadb/mariadb-1000-release-notes/. Accessed 25 Mar 2020

  24. IBM: Cloudant – Overview. https://www.ibm.com/cloud/cloudant. Accessed 25 Mar 2020

  25. Google: Firebase. https://firebase.google.com/. Accessed 25 Mar 2020

  26. Soewito, B., Christian, Gunawan, F.E., Diana, Kusuma, I.G.P.: Websocket to support real time smart home applications. Proc. Comput. Sci. 157, 560–566 (2019)

    Google Scholar 

  27. Bonetta, D., Salucci, L., Marr, S., Binder, W.: GEMs: shared-memory parallel programming for Node.js. In: ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (2019)

    Google Scholar 

  28. Ryza, S., Wall, T.: MRJS: A JavaScript MapReduce Framework for Web Browsers (2010)

    Google Scholar 

  29. Constela, J.: “joseconstela/acio-js,” 5 November 2019. https://github.com/joseconstela/acio-js

  30. Lavoie, E., Hendren, L., Desprez, F., Miguel, C.: Pando: Personal Volunteer Computing in Browsers. arXiv (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Teragni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teragni, M., Moran, R., Zabala, G. (2020). An Edge Focused Distributed Shared Memory. In: Rucci, E., Naiouf, M., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2020. Communications in Computer and Information Science, vol 1291. Springer, Cham. https://doi.org/10.1007/978-3-030-61218-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61218-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61217-7

  • Online ISBN: 978-3-030-61218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics