Skip to main content

Classification of Summer Crops Using Active Learning Techniques on Landsat Images in the Northwest of the Province of Buenos Aires

  • Conference paper
  • First Online:
Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2020)

Abstract

The present work aims to obtain a classifier for summer crops in the northwest of Buenos Aires province from Landsat satellite images. Active Learning (AL) was used as the classification technique since it obtains satisfactory results using a small set of labeled samples to train the algorithm. The construction of the training set is iteratively performed by means of a heuristic for the selection of the unlabeled samples to be classified by an expert. The following heuristics were used for comparison: Breaking Ties, Multiclass Level Uncertainty, Margin Sampling, and Random Sampling. The algorithm was also compared with the supervised technique Support Vector Machine (SVM). The experiments were tested on three Landsat 8 images from different dates using 6 bands per image and various vegetation indices. The results obtained using AL in combination with the different heuristics do not differ substantially from SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernández-Quintanilla, C.: César: Agricultura de precisión. Segundas jornadas científicas sobre medio Ambient. del CCMA-CSIC. 2, 187–194 (2002)

    Google Scholar 

  2. Wang, Y., Lee, K., Cui, S., Risch, E., Lian, J.: Agriculture robot and applications. In: Zheng, D. (ed.) Future Information Engineering and Manufacturing Science : Proceedings of the 2014 International Conference on Future Information Engineering and Manufacturing Science (FIEMS 2014), pp. 43–46, 26–27 June 2014. CRC Press, Taylor & Francis Group, Beijing (2015). https://doi.org/10.1201/b18167

  3. Blackmore, S.: The role of yield maps in precision farming (2003)

    Google Scholar 

  4. Kiefe, T.M., Lillesand, R.W.: Remote Sensing and Image Interpretation. Wiley, New Jersey (2015)

    Google Scholar 

  5. Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L.: Machine learning in geosciences and remote sensing. Geosci. Front. 7, 3–10 (2016). https://doi.org/10.1016/j.gsf.2015.07.003

    Article  Google Scholar 

  6. Camps-Valls, G.: Machine learning in remote sensing data processing. In: IEEE International Workshop on Machine Learning Signal Processing, pp. 1–6 (2009). https://doi.org/10.1109/MLSP.2009.5306233

  7. Scheunders, P., Tuia, D., Moser, G.: Contributions of machine learning to remote sensing data analysis. In: Scheunders, P., Tuia, D., Moser, G. (eds.) Comprehensive Remote Sensing, pp. 199–243. Elsevier BV (2018)

    Google Scholar 

  8. Marcos, D., et al.: Learning deep structured active contours end-to-end. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8877–8885. IEEE, Salt Lake City, UT (2018). https://doi.org/10.1109/CVPR.2018.00925

  9. Maynard, J.J., Levi, M.R.: Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability. Geoderma 285 (2017). in press. https://doi.org/10.1016/j.geoderma.2016.09.024

  10. Teluguntla, P., et al.: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 144, 325–340 (2018). https://doi.org/10.1016/j.isprsjprs.2018.07.017

    Article  Google Scholar 

  11. Song, X., et al.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 190, 383–395 (2017). https://doi.org/10.1016/j.rse.2017.01.008

    Article  Google Scholar 

  12. Gonzalez-Sanchez, A., Frausto-Solis, J., Ojeda-Bustamante, W.: Predictive ability of machine learning methods for massive crop yield prediction. Span. J. Agric. Res. 12, 313–328 (2014). https://doi.org/10.5424/sjar/2014122-4439

    Article  Google Scholar 

  13. Veenadhari, S., Misra, B., Singh, C.D.: Machine learning approach for forecasting crop yield based on climatic parameters. In: 2014 International Conference Computer Communication Informatics Ushering Technology, Tomorrow, Today, ICCCI 2014, pp. 1–5 (2014). https://doi.org/10.1109/ICCCI.2014.6921718

  14. Dimitriadis, S., Goumopoulos, C.: Applying machine learning to extract new knowledge in precision agriculture applications. In: Proceedings of the 12th Pan-Hellenic Conference Informatics, PCI 2008, pp. 100–104 (2008). https://doi.org/10.1109/PCI.2008.30

  15. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016

    Article  Google Scholar 

  16. Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F.: Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. Press. 60 (2017). https://doi.org/10.1109/MGRS.2017.2762307

  17. Settles, B.: Active Learning Literature Survey. University of Wisconsin–Madison (2009)

    Google Scholar 

  18. Crawford, M.M., Tuia, D., Yang, H.L.: Active learning: Any value for classification of remotely sensed data? Proc. IEEE 101, 593–608 (2013). https://doi.org/10.1109/JPROC.2012.2231951

    Article  Google Scholar 

  19. Liu, P., Zhang, H., Eom, K.B.: Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens. 10, 712–724 (2016). https://doi.org/10.1109/JSTARS.2016.2598859

  20. Dallaqua, F.B.J.R., Faria, F.A., Fazenda, A.L.: Active learning approaches for deforested area classification. In: 2018 31st SIBGRAPI Conference Graphics Patterns Images, pp. 48–55 (2019). https://doi.org/10.1109/SIBGRAPI.2018.00013

  21. Li, J., Huang, X., Chang, X.: A label-noise robust active learning sample collection method for multi-temporal urban land-cover classification and change analysis. ISPRS J. Photogramm. Remote Sens. 163, 1–17 (2020). https://doi.org/10.1016/j.isprsjprs.2020.02.022

    Article  Google Scholar 

  22. Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 5, 606–617 (2011). https://doi.org/10.1109/JSTSP.2011.2139193

    Article  Google Scholar 

  23. Brendel, A.S., Ferrelli, F., Piccolo, M.C., Perillo, G.M.E.: Assessment of the effectiveness of supervised and unsupervised methods: maximizing land-cover classification accuracy with spectral indices data. J. Appl. Remote Sens. 13, 1 (2019). https://doi.org/10.1117/1.jrs.13.014503

    Article  Google Scholar 

  24. Rudrapal, D., Subhedar, M.: Land cover classification using support vector machine. Int. J. Eng. Res. 4, 584–588 (2015). https://doi.org/10.17577/ijertv4is090611

  25. Thanh Noi, P., Kappas, M.: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Basel) 18, 1–20 (2017). https://doi.org/10.3390/s18010018

    Article  Google Scholar 

  26. Candade, N., Dixon, B.: Multispectral classification of Landsat images: a comparison of support vector machine and neural network classifiers. ASPRS Annu. Meet. Proc. 43, 1882–1889 (2003)

    Google Scholar 

  27. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York, USA (1992). https://doi.org/10.1145/130385.130401

  28. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond Adaptive Computation and Machine Learning. MIT Press, Cambridge (2002)

    Google Scholar 

  29. Platt, J.C., Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers. pp. 61–74. MIT Press (1999)

    Google Scholar 

  30. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004). https://doi.org/10.5555/1005332.1016791

    Article  MathSciNet  MATH  Google Scholar 

  31. U.S. Geological Survey (2020) ‘Earth Explorer.’ http://earthexplorer.usgs.gov. Accessed 28 Feb 2020

  32. Van Rossum, G., Drake Jr., F.L.: Python Tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands (1995)

    Google Scholar 

  33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Benjamin Cicerchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cicerchia, L.B., Abasolo, M.J., Russo, C.C. (2020). Classification of Summer Crops Using Active Learning Techniques on Landsat Images in the Northwest of the Province of Buenos Aires. In: Rucci, E., Naiouf, M., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2020. Communications in Computer and Information Science, vol 1291. Springer, Cham. https://doi.org/10.1007/978-3-030-61218-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61218-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61217-7

  • Online ISBN: 978-3-030-61218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics