Skip to main content

Saponin-Detoxifying Enzymes

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Pathogenic fungi usually use different tactics to counteract induced and constitutive plant defense mechanisms that include degradation of any chemical compound and inhibition of plant triggered defenses by producing enzymes. Saponins as major bioactive compounds located in several monocot and dicot plant species and have been proposed to be involved in the defense of plants against pathogen outbreak. However, the capability of several pathogenic fungi to produce saponin-neutralizing enzymes would suggest that they play a major role in ascertaining the effect of interaction between plant and pathogen. Most of the saponin-detoxifying enzymes are glycosyl hydrolases, which catalyze hydrolysis of sugars from saponin aglycone that consists of a sugar chain attached to the C3 carbon, resulting in loss of saponin membranolytic properties and consequently loss of toxicity. In this chapter we will discuss and summarize different saponin-detoxifying enzymes and their effects in plant defense, as ultimate objective to increase crop plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arneson PA, Durbin RD (1968a) The sensitivity of fungi to α-tomatine. Phytopathology 58:536–537

    Google Scholar 

  • Arneson PA, Durbin RD (1968b) Studies on the mode of action of tomatine as a fungitoxic agent. Plant Physiol 43:683–686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosetti C, Filomeno M, Riso P et al (2012) Cruciferous vegetables and cancer risk in a network of case-control studies. Ann Oncol 23:2198–2203

    Article  PubMed  CAS  Google Scholar 

  • Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892

    Article  PubMed  CAS  Google Scholar 

  • Bowyer P, Clarke BR, Lunness P, Daniels MJ, Osbourn AE (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267:371–374

    Article  PubMed  CAS  Google Scholar 

  • Bushway AA, Bushway RJ, Kim CH (1990) Isolation, partial purification, and characterization of a potato peel α-solanine cleaving glycosidase. Am Potato J 67:233–238

    Article  CAS  Google Scholar 

  • Buxdorf K, Yaffe H, Barda O, Levy M (2013) The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One 8:e70771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter JP, Spink J, Cannon PF, Daniels MJ, Osbourn AE (1999) Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65:3364–3372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Ullah C, Reichelt M, Beran F, Yang Z-L, Gershenzon J, Hammerbacher A, Vassão DG (2020) The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nat Comm 11:3090

    Article  CAS  Google Scholar 

  • Chew FS (1988) Biological effects of glucosinolates. Am Chem Soc Symp Ser 380:155–181

    CAS  Google Scholar 

  • Cipollini ML, Levey DJ (1997) Why are some fruits toxic? Glycoalkaloids in solanum and fruit choice by vertebrates. Ecology 78:782–798

    Google Scholar 

  • Ciuffetti LM, VanEtten HD (1996) Virulence of a pisatin demethylase-deficient Nectria haematococca MPVI isolate is increased by transformation with a pisatin demethylase gene. Mol Plant Microbe Interact 9:787–792

    Article  Google Scholar 

  • Crombie WML, Crombie L, Green JB, Lucas JA (1986) Pathogenicity of the take-all fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 25:2075–2083

    Article  CAS  Google Scholar 

  • Curir P, Dolci M, Corea G, Galeotti F, Lanzotti V (2006) The plant antifungal isoflavone genistein is metabolized by Armillaria mellea Vahl to give non-fungitoxic products. Plant Biosyst 140:156–162

    Article  Google Scholar 

  • Davis RH (1991) Glucosinolates. In: D’Mello JP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. The Royal Society of Chemistry, Cambridge, UK, pp 202–225

    Google Scholar 

  • Défago G, Kern H (1983) Induction of Fusarium solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiol Plant Pathol 22:29–37

    Article  Google Scholar 

  • Défago G, Kern H, Sedlar L (1983) Genetic analysis of tomatine insensitivity, sterol content and pathogenicity for green tomato fruits in mutants of Fusarium solani. Physiol Mol Plant Pathol 22:39–43

    Article  Google Scholar 

  • Duncan AJ (1991) Glucosinolates. In: D’Mello JP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. The Royal Society of Chemistry, Cambridge, UK, pp 126–147

    Chapter  Google Scholar 

  • Essers AJA, Jurgens CMGA, Nout MJR (1995) Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava. Int J Food Microbiol 26:251–257

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  PubMed  CAS  Google Scholar 

  • Fewell AM, Roddick JG (1993) Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 33:323–328

    Article  CAS  Google Scholar 

  • Franco P, Spinozzi S, Pagnotta E, Lazzeri L, Ugolini L, Camborata C et al (2016) Development of a liquid chromatography—electrospray ionization—tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods. J Chromatogr A 1428:154–161

    Article  PubMed  CAS  Google Scholar 

  • Friedman M, Dao L (1992) Distribution of glycoalkaloids in potato plants and commercial potato products. J Agric Food Chem 40:419–423

    Article  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–l 32

    Article  CAS  Google Scholar 

  • Fry WE, Myers DF (1981) Hydrogen cyanide metabolism by fungal pathogens of cyanogenic plants. In: Vennesland B, Knowles CJ, Conn EE, Westley J, Wissing F (eds) Cyanide in biology. Academic, London, pp 321–334

    Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  CAS  Google Scholar 

  • Goodwin RH, Pollock BM (1954) Studies on roots. I. Properties and distribution of fluorescent constituents in Avena roots. Am J Bot 4:516–520

    Article  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Hurst WJ, Glinski JA, Miller KB, Apgar J, Davey MH, Stuart DA (2008) Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem 56:8374–8378

    Article  PubMed  CAS  Google Scholar 

  • Jeschke V et al (2017) How glucosinolates affect generalist Lepidopteran larvae: growth, development and glucosinolate metabolism. Front Plant Sci 8:1995

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuroda M, Mimaki Y, Kameyama A et al (1995) Steroidal saponins from Allium chinense and their inhibitory activities on cyclic AMP phosphodiesterase and Na+K+ ATPase. Phytochemistry 40:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Lanzotti V (2012) Bioactive polar natural compounds from garlic and onions. Phytochem Rev 11:179–196

    Article  CAS  Google Scholar 

  • Lanzotti V, Romano A, Lanzuise S, Bonanomi G, Scala F (2011) Antifungal saponins from bulbs of white onion, Allium cepa L. Phytochemistry 74:133–139

    Article  PubMed  CAS  Google Scholar 

  • Maizel JV, Burkhardt HJ, Mitchell HK (1964) Avenacin, an antimicrobial substance isolated from Avena sativa. I. Isolation and antimicrobial activity. Biochemistry 3:424–431

    Article  PubMed  CAS  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Nakari-Setälä T, Penttila M (1996) Cloning of genes encoding β-l-arabinofuranoside and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840–3846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Ballesta MC, Moreno DA, Carvajall M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625

    Article  CAS  Google Scholar 

  • Martin-Hernandez AM, Dufresne M, Hugouvieux V, Melton R, Osbourn A (2000) Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Mol Plant Microbe Interact 13:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Mimaki Y, Nikaido T, Matsumoto K et al (1994) New steroidal saponins from the bulbs of Allium giganteum exhibiting potent inhibition of cAMP phosphodiesterase activity. Chem Pharm Bull 42:710–714

    Article  CAS  Google Scholar 

  • Mirsalikhova NM, Kravets SS, Sokolova SF et al (1993) Inhibition of highly purified porcine kidney Na, K-ATPase by steroid glycosides of the spirostan and furostan series and a study of structure–activity relationships. Chem Nat Comp 29:490–497

    Article  Google Scholar 

  • Mithen R (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica 63:71–83

    Article  CAS  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oda Y, Saito K, Ohara-Takada A, Mori M (2002) Hydrolysis of the potato glycoalkaloid α-chaconine by filamentous fungi. J Biosci Bioeng 94:321–325

    Article  PubMed  CAS  Google Scholar 

  • Oka K, Okubo A, Kodama M, Otani H (2006) Detoxification of α-tomatine by tomato pathogens Alternaria alternata tomato pathotype and Corynespora cassiicola and its role in infection. J Gen Plant Pathol 72:152–158

    Article  CAS  Google Scholar 

  • Osbourn AE (1996) Saponins and plant defence-a soap story. Trends Plant Sci 1:4–9

    Article  Google Scholar 

  • Osbourn AE, Clarke BR, Dow JM, Daniels MJ (1991) Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae. Physiol Mol Plant Pathol 38:301–312

    Article  CAS  Google Scholar 

  • Osbourn AE, Clarke BR, Lunness P, Scott PR, Daniels MJ (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol 45:457–467

    Article  CAS  Google Scholar 

  • Osbourn AE, Bowyer P, Lunness P, Clarke B, Daniels M (1995) Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins. Mol Plant Microbe Interact 8:971–978

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE, Bowyer P, Daniels MJ (1996) Saponin detoxification by plant pathogenic fungi. In: Waller GR, Yamasaki K (eds) Saponins used in traditional and modern medicine. Advances in experimental medicine and biology, vol 404. Springer, Boston, MA

    Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. PNAS 96:12923–12928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poulton JE (1988) Localization and catabolism of cyanogenic glycosides. Ciba Found Symp 140:67–91

    PubMed  CAS  Google Scholar 

  • Poulton JE, Moller BL (1993) Glucosinolates. Methods Plant Biochem 9:209–237

    CAS  Google Scholar 

  • Rask L et al (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  PubMed  CAS  Google Scholar 

  • Roddick J (1974) The steroidal glycoalkaloid tomatine. Phytochemistry 13:9–25

    Article  CAS  Google Scholar 

  • Sánchez-Maldonado AF, Schieber A, Gänzle MG (2016) Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): glycoalkaloids and phenolic acids show synergistic effects. J Appl Microbiol 120:955–965

    Article  PubMed  CAS  Google Scholar 

  • Sandrock RW, VanEtten HD (1998) Fungal sensitivity to and enzymatic degradation of the phytoanticipin α-tomatine. Phytopathology 88:137–143

    Article  PubMed  CAS  Google Scholar 

  • Sandrock RW, VanEtten HD (2001) The relevance of tomatinase activity in pathogens of tomato: disruption of the β2-tomatinase gene in Colletotrichum coccodes and Septoria lycopersici and heterologous expression of the Septoria lycopersici β2-tomatinase in Nectria haematococca, a pathogen of tomato fruit. Physiol Mol Plant Pathol 58:159–171

    Article  CAS  Google Scholar 

  • Sandrock RW, DellaPenna D, VanEtten HD (1995) Purification and characterization of β2-tomatinase, an enzyme involved in the degradation of α-tomatine and isolation of the gene encoding β2-tomatinase from Septoria lycopersici. Mol Plant Microbe Interact 8:960–970

    Article  PubMed  CAS  Google Scholar 

  • Senegupta S, Prasanna TB, Kasbekar DP (1995) Sterol 14,15 reductase (erg-3) mutations switch the phenotype of Neurospora crassa from sensitivity to the tomato saponin α-tomatine to sensitivity to the pea phytoalexin pisatin. Fungal Genet Newsl 42:71–72

    Google Scholar 

  • Smith JD, Woldemariam MG, Mescher MC, Jander G, De Moraes CM (2016) Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiol 172:181–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suleman P, Tohamy AM, Saleh AA, Madkour MA, Straney DC (1996) Variation in sensitivity to tomatine and rishitin among isolates of Fusarium oxysporum f.sp. lycopersici, and strains not pathogenic to tomato. Physiol Mol Plant Pathol 48:131–144

    Article  CAS  Google Scholar 

  • Teshima Y et al (2013) Identification and biological activity of antifungal saponins from shallot (Allium cepa L. Aggregatum Group). Agric Food Chem (31):7440–7445

    Google Scholar 

  • VanEtten HD, Sandrock RW, Wasmann CC, Soby SD, McCluskey K, Wang P (1995) Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can J Bot 73:S518–S525

    Article  CAS  Google Scholar 

  • Weltring KM, Wessels J, Geyert R (1997) Metabolism of the potato saponins É‘-chaconine and É‘-solanine by Gibberella pilicaris. Phytochemistry 46:1005–1009

    Article  CAS  Google Scholar 

  • Wubben JP, Price KR, Daniels MJ, Osbourn AE (1996) Detoxification of oat leaf saponins by Septoria avenae. Phytopathology 86:986–992

    Article  CAS  Google Scholar 

  • Yue Q, Bacon CW, Richardson MD (1998) Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by Fusarium moliliforme. Phytochemistry 48:451–454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahman, M., Jogaiah, S. (2020). Saponin-Detoxifying Enzymes. In: Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-61149-1_5

Download citation

Publish with us

Policies and ethics