Skip to main content

Metabolic and Functional Diversity of Saponins

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

The ‘saponin’ word is originated from Latin name ‘sāpō’ means ‘soap’, as saponins make foams when they are shaken using water. These are a varied class of surface active and nonvolatile secondary metabolites are broadly dispersed in nature, existing in diverse species of plants, including both monocot and dicot. Saponins are 30-carbon skeleton molecules derived from oxidosqualene precursor that consisted of nonpolar aglycones, to which one or more polar monosugar molecules are attached. The polar (sugar moieties) and nonpolar (aglycones) structures mixture in the saponin compounds describe their soap like behavior in water and provide the base for their biological activities. Although saponin is considered major group of plant natural products, their functions in plant biological process are not fully understood and saponins are usually recognized to have significant functions in plant defense mechanisms against pathogens, herbivores and pests. Saponin compounds have a wide array of characters, such as emulsifying and foaming, bitterness and sweetness, antimicrobial, insecticidal, as well as pharmacological and medicinal properties. Although in the early times it may be suitable to categorize saponin compounds according to their biological and/or physicochemical activities, currently with the high throughput in chemistry and mass spectrometry, the structural diversity of saponin compounds became the main classification scheme. In this chapter, we will try to describe the different types of saponin compounds and their distributions in the different plant species. The new isolated saponin compounds from different plants will also be listed as a source information for future biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Hirata S, Ito S, Yamauchi N, Shigyo M (2014) Compartmentation and localization of bioactive metabolites in different organs of Allium roylei. Biosci Biotechnol Biochem 78:1112–1122

    Article  PubMed  CAS  Google Scholar 

  • Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito S-I, Tanaka K, Mine Y, Sugiyama N, Suzuki Y, Yamauchi N, Shigyo M (2017a) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 12:e0181784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abdelrahman M, Mahmoud HYAH, El-Sayed M, Tanaka S, Tran LS (2017b) Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity. Plant Physiol Biochem 116:167–173

    Article  PubMed  CAS  Google Scholar 

  • Abdelrahman M, Hirata S, Sawada Y, Hirai MY, Sato S, Hirakawa H, Mine Y, Tanaka K, Shigyo M (2019) Widely targeted metabolome and transcriptome landscapes of Allium fistulosumA. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 9:3541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abe I, Rohmer M, Prestwich GC (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206

    Article  CAS  Google Scholar 

  • Adao CR, Da Silva BP, Parente JP (2011) A new steroidal saponin from Allium ampeloprasum var. porrum with antiinflammatory and gastroprotective effects. Phytochem Lett 4:306–310

    Article  CAS  Google Scholar 

  • Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457

    Article  PubMed  CAS  Google Scholar 

  • Baeg IH, So SH (2013) The world ginseng market and the ginseng (Korea). J Ginseng Res 37:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Berhow MA, Wagner ED, Vaughn SF, Plewa MJ (2000) Characterization and antimutagenic activity of soybean saponins. Mutat Res 448:11–22

    Article  PubMed  CAS  Google Scholar 

  • Berhow MA, Duval SM, Dobbins TA, Maynes J (2002) Analysis and quantitative determination of group B saponins in processed soybean products. Phytochem Anal 13:343–348

    Article  PubMed  CAS  Google Scholar 

  • Challinor VL, De Voss JJ (2013) Open-chain steroidal glycosides, a diverse class of plant saponins. Nat Prod Rep 30:429–454

    Article  PubMed  CAS  Google Scholar 

  • Chen JT, Li HZ, Wang D, Zhang YJ, Yang CR (2006) New dammarane monodesmosides from the acidic deglycosylation of notoginseng-leaf saponins. Helv Chim Acta 89:1442–1448

    Article  CAS  Google Scholar 

  • Chen J, Zhao R, Zeng YM, Meng H, Zuo WJ, Li X, Wang JH (2009) Three new triterpenoid saponins from the leaves and stems of Panax quinquefolium. J Asian Nat Prod Res 11:195–201

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-B, Wang Y, Zhang Y-F et al (2013) Steroidal saponins from Allii macrostemonis bulbs. Chin Tradit Herb Drug 44:1078–1081

    CAS  Google Scholar 

  • Cibulski SP, Mourglia-Ettlin G, Teixeira TF, Quirici L, Roehe PM, Ferreira F, Silveira F (2016) Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine 34:1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Cui XM, Jiang ZY, Zeng J, Zhou JM, Chen JJ, Zhang XM, Xu LS, Wang Q (2008) Two new dammarane triterpene glycosides from the rhizomes of Panax notoginseng. J Asian Nat Prod Res 10:845–849

    Article  PubMed  CAS  Google Scholar 

  • de Costa F, Yendo AC, Cibulski SP, Fleck JD, Roehe PM, Spilki FR, Gosmann G, Fett-Neto AG (2016) Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-a saponins are equally effective in inducing specific immune responses. PLoS One 9:e105374

    Article  CAS  Google Scholar 

  • de Faria JT, de Oliveira EB, Minim VPR, Minim LA (2017) Performance of Quillaja bark saponin and β-lactoglobulin mixtures on emulsion formation and stability. Food Hydrocoll 67:178–188

    Article  CAS  Google Scholar 

  • Dixit V, Tewari J, Obendorf SK (2010) Fungal growth inhibition of regenerated cellulose nanofibrous membranes containing Quillaja saponin. Arch Environ Contam Toxicol 59:417–423

    Article  PubMed  CAS  Google Scholar 

  • Dou DQ, Chen YJ, Liang LH, Pang FG, Shimizu N, Takeda T (2001) Six new dammarane-type triterpene saponins from the leaves of Panax ginseng. Chem Pharm Bull (Tokyo) 49:442–446

    Article  CAS  Google Scholar 

  • Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Di Rosa M, Lanaro A (2000) Cytotoxicsaponins from bulbs of Allium porrum L. J Agric Food Chem 48:3455–3462

    Article  PubMed  CAS  Google Scholar 

  • Fattorusso E, Iorizzi M, Lanzotti V (2002) Chemical composition of shallot (Allium ascalonicum Hort.). J Agric Food Chem 50(20):5686–5690

    Article  PubMed  CAS  Google Scholar 

  • Fleck JD, Kauffmann C, Spilki F, Lencina CL, Roehe PM, Gosmann G (2006) Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice. Vaccine 24:7129–7134

    Article  PubMed  CAS  Google Scholar 

  • Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG (2019) Saponins from Quillaja saponaria and Quillaja brasiliensis: particular chemical characteristics and biological activities. Molecules 24:171

    Article  PubMed Central  CAS  Google Scholar 

  • Güçlü-Ustündağ O, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Kenne L (2000) Structural studies of triterpenoid saponins with new acyl components from Quillaja saponaria Molina. Phytochemistry 55:419–428

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Lennart K, Lundgren LN, Rönnberg B, Sundquist BG (1998) Triterpenoid saponins from Quillaja saponaria. Phytochemistry 48:175–180

    Article  PubMed  CAS  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. In: Dutta NN et al (eds) History and trends in bioprocessing and biotransformation. Advances in biochemical engineering/biotechnology, vol 75. Springer, Berlin, Heidelberg, pp 31–49

    Google Scholar 

  • Higuchi R, Tokimitsu Y, Komori T (1988) An acylated triterpenoid saponin from Quillaja saponaria. Phytochemistry 27:1165–1168

    Article  CAS  Google Scholar 

  • Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92:2809–2821

    Article  PubMed  CAS  Google Scholar 

  • Hong HD, Choi SY, Kim YC, Lee YC, Cho CW (2009) Rapid determination of ginsenosides Rb 1, Rf, and Rg 1 in Korean ginseng using HPLC. J Ginseng Res 33:8–12

    Article  CAS  Google Scholar 

  • Jacobsen NE, Fairbrother WJ, Kensil CR, Lim A, Wheeler DA, Powell MF (1996) Carbohydr Res 280:1–14

    Article  PubMed  CAS  Google Scholar 

  • Jegal J, Jeong EJ, Yang MH (2019) A review of the different methods applied in ginsenoside extraction from Panax ginseng and Panax quinquefolius roots. Nat Product Commun 14:1–10

    Google Scholar 

  • Jiang HP, Qiu YK, Cheng DR, Kang TG, Dou DQ (2008) Structure elucidation and complete NMR spectral assignments of two new dammarane-type tetraglycosides from Panax quinquefolium. Magn Reson Chem 46:786–790

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA, Durst F (2000) Function and evolution of plant cytochrome P450. Recent Adv Phytochem 34:151–189

    Article  CAS  Google Scholar 

  • Kaku T, Miyata T, Uruno T, Sako I, Kinoshita A (1975) Chemico-pharmacological studies on Saponins of Panax Ginseng C. A. Meyer. I. Chemical part. Arzneimittelforschung 25:343–347

    PubMed  CAS  Google Scholar 

  • Kato S, Yumoto S, Takada Y, Kono Y, Shimada S, Sakai T, Shimada H, Takahashi K, Adachi T, Tabuchi K, Kikuchi A (2007) A new soybean cultivar ‘Kinusayaka’ lacking three lipoxygenaseisozymes and group a acetyl saponin. Bull Natl Agric Res Cent Tohoku Reg 107:29–42

    Google Scholar 

  • Kereselidze EV, Pkheidze TA, Kemertelidze EP (1970) Diosgenin from Allium albidum. Khim Prir Soedin 6(3):378

    CAS  Google Scholar 

  • Khristulas FS, Gorovits MB, Luchanskaya VN et al (1970) A new steroid sapogenin from Alliumgiganteum. Khim Prir Soedin 6:489

    CAS  Google Scholar 

  • Kikuchi A, Tsukamoto C, Tabuchi K, Adachi T, Okubo K (1999) Inheritance and characterization of a null allele for group Aacetyl saponins found in a mutant soybean (Glycine max (L.) Merrill). Breed Sci 49:167–171

    Article  CAS  Google Scholar 

  • Kim Y-J, Lee OR, Oh JY, Jang M-G, Yang D-C (2014) Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiol 165:373–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitagawa I, Wang HK, Taniyama T, Yoshikawa AM (1998) Saponin and sapogenol A, soy sapogenol B, and soy sapogenol E oleanene sapogenols from soybean Glycine max. Structures of soy saponin I, soy saponin II, and soy saponin III. Chem Pharm Bull 36:153–161

    Article  Google Scholar 

  • Kite GC, Howes MJ, Simmonds MS (2004) Metabolomic analysis of saponins in crude extracts of Quillaja saponaria by liquid chromatography/mass spectrometry for product authentication. Rapid Commun Mass Spect 18:2859–2870

    Article  CAS  Google Scholar 

  • Kochan E, Szymańska G, Wielanek M, Wiktorowska-Owczarek A, Jóźwiak-Bębenista M, Grzegorczyk-Karolak I (2019) The content of triterpene saponins and phenolic compounds in American ginseng hairy root extracts and their antioxidant and cytotoxic properties. Plant Cell Tissue Org Cult 138:353–362

    Article  CAS  Google Scholar 

  • Komakine N, Okasaka M, Takaishi Y, Kawazoe K, Murakami K, Yamada Y (2006) New dammarane-type saponin from roots of Panax notoginseng. J Nat Med 60:137

    Article  CAS  Google Scholar 

  • Kravets SD, Vollerner YS, Gorovits MB et al (1990) Steroids of the spirostan and furostan series from plants of the genus Allium. Chem Nat Comp 26:359–373

    Article  Google Scholar 

  • Kushiro T, Ebizuka Y (2010) Triterpenes. In: Mander L, Liu HWB (eds) Comprehensive natural products II: chemistry and biology, vol 1. Elsevier, Oxford, pp 673–708

    Chapter  Google Scholar 

  • Kushiro T, Ohno Y, Shibuya M, Ebizuka Y (1997) In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes. Biol Pharm Bull 20:292–294

    Article  PubMed  CAS  Google Scholar 

  • Kuzina V, Ekstrøm CT, Andersen SB, Nielsen JK, Olsen CE, Bak S (2009) Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol 151:1977–1990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon HW (2019) Inhibitory effects of ginsenoside Ro on clot retraction through suppressing PI3K/Akt signaling pathway in human platelets. Prev Nutr Food Sci 24:56–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanzotti V (2005) Bioactive saponins from Allium and Aster plants. Phytochem Rev 4:95–110

    Article  CAS  Google Scholar 

  • Lanzotti V (2012) Bioactive polar natural compounds from garlic and onions. Phytochem Rev 11:179–196

    Article  CAS  Google Scholar 

  • Lee M, Shon HJ, Choi CS, Hung TM, Min BS, Bae K (2009) Ginsenosides from heat processed ginseng. Chem Pharm Bull 57:92–94

    Article  CAS  Google Scholar 

  • Lee MH, Han JY, Kim HJ, Kim YS, Huh GH, Choi YE (2011) Dammarenediol-II production confers TMV tolerance in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase. Plant Cell Physiol 53:173–182

    Article  PubMed  CAS  Google Scholar 

  • Lee DG, Lee J, Cho IH, Kim H-J, Lee S-W, Kim Y-O, Park C-G, Lee S (2017) Ginsenoside Rg12, a new dammarane-type triterpene saponin from Panax ginseng root. J Ginseng Res 41:531–533

    Article  PubMed  Google Scholar 

  • Leshem Y, Levin I (1978) The effect of growing alfalfa on subsequent cotton plant development and on nitrate formation in peat soil. Plant Soil 50:323–328

    Article  CAS  Google Scholar 

  • Li HZ, Teng RW, Yang CR (2001) A novel hexanordammarane glycoside from the roots of Panax nontoginseng. Chin Chem Lett 12:59–62

    CAS  Google Scholar 

  • Li GY, Zeng YM, Meng H, Li X, Wang JH (2009) A new triterpenoid saponin from the leaves and stems of Panax quinquefolium L. Chin Chem Lett 20:1207–1210

    Article  CAS  Google Scholar 

  • Liao PY, Wang D, Zhang YJ, Yang CR (2008) Dammarane-type glycosides from steamed notogensing. J Agric Food 56:1751–1756

    Article  CAS  Google Scholar 

  • Lu JM, Jiang J, Jamaluddin MS, Liang Z, Yao Q, Chen C (2019) Ginsenoside Rb1 blocks ritonavir-induced oxidative stress and ENOS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells. Int J Mol Sci 20:294

    Article  PubMed Central  CAS  Google Scholar 

  • Luo HM, Sun C, Sun YZ, Wu Q, Li Y, Song JY, Niu YY, Cheng X, Xu HX, Li CY et al (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin–biosynthetic genes and genetic markers. BMC Genome 12:S5

    Article  CAS  Google Scholar 

  • MacDonald RS, Guo JY, Copeland J, Browning JD, Sleper JD, Rottinghaus GE, Berhow MA (2005) Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J Nutr 135:1239–1242

    Article  PubMed  CAS  Google Scholar 

  • Maier C, Conrad J, Carle R, Weiss J, Schweiggert RM (2015) Phenolic constituents in commercial aqueous Quillaja (Quillaja saponaria Molina) wood extracts. J Agric Food Chem 63:1756–1762

    Article  PubMed  CAS  Google Scholar 

  • Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC (2018) Molecular signaling of Ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 42:123–132

    Article  PubMed  Google Scholar 

  • Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mostafa A, Jogaiah S, El-Sayed M, Ito S-I et al (2013a) Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6:274–280

    Article  CAS  Google Scholar 

  • Mostafa A, Sudisha J, El-Sayed M, Ito S-I, Ikeda T, Yamauchi N, Shigyo M (2013b) Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6:274–280

    Article  CAS  Google Scholar 

  • Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M (2007a) Medicinal flowers. XVII. New dammarane-type triterpene glycosides from flower buds of American ginseng, Panax quinquefolium L. Chem Pharm Bull (Tokyo) 55:1342–1348

    Article  CAS  Google Scholar 

  • Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M (2007b) Structures of dammarane-type triterpene triglycosides from the flower buds of Panax ginseng. Heterocycles 71:577–588

    Article  CAS  Google Scholar 

  • Nguyen HT, Song GY, Kang HK, Kim YH (2010a) New dammarane saponins from the steamed ginseng leaves. Bull Kor Chem Soc 31:2094–2096

    Article  CAS  Google Scholar 

  • Nguyen HT, Song GY, Kim JA, Hyun JH, Kang HK, Kim YH (2010b) Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 20:309–314

    Article  PubMed  CAS  Google Scholar 

  • Niu YY, Luo HM, Sun C, Yang T-J, Dong L, Huang LF, Chen SL (2014) Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 533:295–303

    Article  PubMed  CAS  Google Scholar 

  • Nord LI, Kenne L (2000) Novel acetylated triterpenoid saponins in a chromatographic fraction from Quillaja saponaria Molina. Carbohydr Res 329:817–829

    Article  PubMed  CAS  Google Scholar 

  • Nyberg NT, Baumann H, Kenne L (2003) Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria. Anal Chem 75:268–274

    Article  PubMed  CAS  Google Scholar 

  • Okubo K, Iijima M, Kobayashi Y, Yoshikoshi M, Uchida T, Kudou S (1992) Components responsible for the undesirable taste of soybean seeds. Biosci Biotechnol Biochem 56:99–103

    Article  CAS  Google Scholar 

  • Oleszek W (1993) Allelopathic potentials of alfalfa (Medicago sativa) saponins: their relation to antifungal and hemolytic activities. J Chem Ecol 19:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4

    Article  PubMed  CAS  Google Scholar 

  • Panneerselvam K, Tsukamoto C, Honda N et al (2013) Saponin polymorphism in the Korean wild soybean (Glycine soja Sieb. and Zucc.). Plant Breed 132:121–126

    Article  CAS  Google Scholar 

  • Parente JP, Da Silva BP (2009) Bioactive complex triterpenoid saponins from the Leguminosae family. Nat Prod Commun 4:143–155

    PubMed  CAS  Google Scholar 

  • Park IH, Han SB, Kim JM, Piao LZ, Kwon SW, Kim NY, Kang TL, Park MK, Park JH (2002a) Four new acetylated ginsenosides from processed ginseng (sun ginseng). Arch Pharm Res 25:837–841

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Kim NY, Han SB, Kim JM, Kwon SW, Kim HJ, Park MK, Park JH (2002b) Three new dammarane glycosides from heat processed ginseng. Arch Pharm Res 25:428–432

    Article  PubMed  CAS  Google Scholar 

  • Patel SS, Savjani JK (2015) Systematic review of plant steroids as potential anti-inflammatory agents: current status and future perspectives. Phytopharmacology 4:121–125

    Google Scholar 

  • Pen B, Sar C, Mwenya B, Kuwaki K, Morikawa R, Takahashi J (2006) Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim Feed Sci Technol 129:175–186

    Article  Google Scholar 

  • Qi LW, Wang C-Z, Yuan C-S (2011) Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 28:467–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu F, Ma ZZ, Xu SX, Yao XS, Che CT, Chen YJ (2001) A pair of 24-hydroperoxyl epimeric dammarane saponins from flower-buds of Panax ginseng. J Asian Nat Prod Res 3:235–240

    Article  PubMed  CAS  Google Scholar 

  • Reichert CL, Salminen H, Bönisch GB, Schäfer C, Weissa J (2019) Concentration effect of Quillaja saponin - co-surfactant mixtures on emulsifying properties. Colloid Interface Sci 519:71–80

    Article  CAS  Google Scholar 

  • Roner MR, Sprayberry J, Spinks M, Dhanji S (2007) Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). J Gen Virol 88:275–285

    Article  PubMed  CAS  Google Scholar 

  • Roner MR, Tam KI, Kiesling-Barrager M (2010) Prevention of rotavirus infections in vitro with aqueous extracts of Quillaja Saponaria Molina. Future Med Chem 2:1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi M, Zolfaghari B, Senatore M, Lanzotti V (2013) Spirostane, furostane and cholestane saponins from Persian leek with antifungal activity. Food Chem 141:1512–1521

    Article  PubMed  CAS  Google Scholar 

  • San Martín R, Briones R (1999) Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ Bot 53:302–311

    Article  Google Scholar 

  • Sang S, Mao S, Lao A, Chen Z, Ho CT (2001) Four new steroidal saponins from the seeds of Allium tuberosum. J Agric Food Chem 49:1475–1478

    Article  PubMed  CAS  Google Scholar 

  • Sasama H, Takada Y, Ishimoto M, Kitamura K, Tsukamoto C (2010) Estimation of the mutation site of a soyasapogenol A-deficient soybean [Glycine max (L.) Merr.] by LC-MS/MS profile analysis. In: Cadwallader KR, Chang S (eds) Chemistry, texture, and flavor of soy, vol 1059. American Chemical Society, New York, pp 91–102

    Google Scholar 

  • Sasama T, Ono E, Takagi K, Takada Y, Horikawa M, Nakamoto Y et al (2012) The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean. Plant Cell 24:2123–2138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 30. https://doi.org/10.3389/fpls.2011.00025

  • Shi J, Arunasalam K, Yeung D et al (2004) Saponins from edible legumes: chemistry, processing, and health benefits. J Med Food 7:67–78

    Article  PubMed  CAS  Google Scholar 

  • Shi Z-Y, Zeng J-Z, Wong AST (2019) Chemical structures and pharmacological profiles of ginseng saponins. Molecules 24:2443

    Article  PubMed Central  CAS  Google Scholar 

  • Shimoyamada M, Kudou S, Okubo K, Yamauchi F, Harada K (1990) Distribution of saponin constituents in some varieties of soybean plant. Agric Biol Chem 54:77–81

    CAS  Google Scholar 

  • Shin KC, Oh DK (2016) Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit Rev Biotechnol 36:1036–1049

    Article  PubMed  CAS  Google Scholar 

  • Shin B-K, Kwon SW, Park JH (2015) Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 39:287–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiraiwa M, Yamauchi F, Harada K, Okubo K (1990) Inheritance of “group A saponin” in soybean seed. Agric Biol Chem 54:1347–1352

    CAS  Google Scholar 

  • Shiraiwa S, Harada K, Okubo K (1991a) Composition and content of saponins in soybean seed according to variety, cultivation year and maturity. Agric Biol Chem 55:323–331

    CAS  Google Scholar 

  • Shiraiwa M, Harada K, Okubo K (1991b) Composition andstructure of “group B saponin” in soybean seed. Agric Biol Chem 55:911–917

    PubMed  CAS  Google Scholar 

  • Sobolewska D, Janeczko Z, Podolak I et al (2009) Densitometric analysis of diosgenin in methanolic extracts of Allium ursinum collected at different times during plant development. J Planar Chromatogr 22:305–307

    Article  CAS  Google Scholar 

  • Sobolewska D, Michalska K, Podolak I, Grabowska K (2016) Steroidal saponins from the genus Allium. Phytochem Rev 15:1–35

    Article  PubMed  CAS  Google Scholar 

  • Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M (2009) Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem Pharm Bull 57:283–287

    Article  CAS  Google Scholar 

  • Sugiyama A (2019) The soybean rhizosphere: metabolites, microbes, and beyond—a review. J Adv Res 19:67–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun H-X, Xie Y, Ye Y-P (2009) Advances in saponin-based adjuvants. Vaccine 27:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Szakiel A, Pączkowski C, Henry M (2011) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471–491

    Article  CAS  Google Scholar 

  • Takada Y, Sayama T, Kikuchi A, Kato S, Tatsuzaki N, Nakamoto Y, Suzuki A, Tsukamoto C, Ishimoto M (2010) Genetic analysis of variation in sugar chain composition atthe C-22 position of group A saponins in soybean, Glycine max (L.). Merrill. Breed Sci 60:3–8

    Article  CAS  Google Scholar 

  • Takada Y, Tayama I, Sayama T, Sasama H, Sarut M, Kikuchi A, Ishimoto M, Tsukamoto C (2012) Genetic analysis of variations in the sugar chain composition at the C-3 position of soybean seed saponins. Breed Sci 61:639–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tam KI, Roner MR (2011) Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina. Antivir Res 90:231–241

    Article  PubMed  CAS  Google Scholar 

  • Taniyama T, Yoshikawa M, Kitagawa I (1988a) Saponinand sapogenol. XLIV. Soyasaponin composition in soybeans of variousorigins and soyasaponin content in various organs of soybean. Structure of soyasaponin V from soybean hypocotyl. Yakugaku Zasshi 108:562–571

    Article  PubMed  CAS  Google Scholar 

  • Taniyama T, Nagahama Y, Yoshikawa M, Kitagawa I (1988b) Saponin and sapogenol. XLIII. Acetyl-soyasaponins A4, A5, and A6, new astringent bisdesmosides of soyasapogenol A, from Japanese soybean, the seeds of Glycine max MERRILL. Chem Pharm Bull (Tokyo) 36:2829–2839

    Article  CAS  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149

    Article  PubMed  CAS  Google Scholar 

  • Teng RW, Ang C, McManus D, Armstrong D, Mau S, Bacic A (2004a) Regioselective acylation of ginsenosides by Novozyme 435 to generate molecular diversity. Helv Chim Acta 87:1860–1872

    Article  CAS  Google Scholar 

  • Teng RW, Li HZ, Wang DZ, Yang CR (2004b) Hydrolytic reaction of plant extracts to generate molecular diversity: new dammarane glycosides from the mild acid hydrolysate of root saponins of Panax notoginseng. Helv Chim Acta 87:1270–1278

    Article  CAS  Google Scholar 

  • Tsukamoto C, Kikuchi A, Harada K et al (1993) Genetic and chemical polymorphisms of saponins in soybean seed. Phytochemistry 34:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Tsuno Y, Fujimatsu T, Endo K, Sugiyama A, Yazaki K (2018) Soyasaponins: a new class of root exudates in soybean (Glycine max). Plant Cell Physiol 59:366–375

    Article  PubMed  CAS  Google Scholar 

  • Tung NH, Song GY, Park YJ, Kim YH (2009) Two new dammarane-type saponins from the leaves of Panax ginseng. Chem Pharm Bull (Tokyo) 57:1412–1414

    Article  Google Scholar 

  • Tung NH, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, Lim CM, Hyun JW, Park CJ, Kang HK, Kim YH (2010) Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 58:868–874

    Article  PubMed  CAS  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative meta-transcriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Li W, Li X (1998) A new saponin from the leaves and stems of Panax quinquefolium L. collected in Canada. J Asian Nat Prod Res 1:93–97

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Li W, Sha Y, Tezuka Y, Kadota S, Li X (2001a) Triterpenoid saponins from leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 3:123–130

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Sha Y, Tezuka Y, Kadota S, Li X (2001b) Quinquenoside L9 from leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 3:293–297

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Wang D, Ma XX, Zhang Y-J, Yang C-R (2008) Two new dammarane-type bisdesmosides from the fruit pedicels of Panax notoginseng. Helv Chim Acta 91:60–66

    Article  CAS  Google Scholar 

  • Wang J-R, Yamasaki Y, Tanaka T, Kouno I, Jiang Z-H (2009) Dammarane-type triterpene saponins from the flowers of Panax notoginseng. Molecules 14:2087–2094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wojciechowski K (2013) Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces. Colloids Surf B Biointerfaces 108:95–102

    Article  PubMed  CAS  Google Scholar 

  • Wong AST, Che CM, Leung KW (2015) Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 32:256–272

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Zhang Q, Zhu Y et al (2008) Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance. J Agric Food Chem 56:11132–11138

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J et al (2017) Panax Ginseng genome examination for ginsenoside biosynthesis. Gigascience 6:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang XW, Li LY, Tian JM, Zhang ZW, Ye JM, Gu WF (2000) Ginsenoside-Rg6, a novel triterpenoid saponin from the stem-leaves of Panax ginseng CAMey. Chin Chem Lett 11:909–912

    CAS  Google Scholar 

  • Yang J-L, Hu Z-F, Zhang T-T, Gu A-D, Gong T, Zhu P (2018) Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules 23:589

    Article  PubMed Central  CAS  Google Scholar 

  • Yoshikawa M, Morikawa T, Yashiro K, Murakami T, Matsuda H (2001) Bioactive saponins and glycosides. XIX. Notoginseng (3): immunological adjuvant activity of notoginsenosides and related saponins: structures of notoginsenosides-L, -M, and -N from the roots of Panax notoginseng (Burk.) F.H. Chen. Chem Pharm Bull (Tokyo) 49:1452–1456

    Article  CAS  Google Scholar 

  • Yoshikawa M, Morikawa T, Kashima Y, Ninomiya K, Matsuda H (2003) Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal ginseng saponins. J Nat Prod Res 66:922–927

    Article  CAS  Google Scholar 

  • Yoshikawa M, Sugimoto S, Nakamura S, Sakumae H, Matsuda H (2007a) Medicinal flowers. XVI. New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chem Pharm Bull 55:1034–1038

    Article  CAS  Google Scholar 

  • Yoshikawa M, Sugimoto S, Nakam S, Matsuda H (2007b) Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng. Chem Pharm Bull (Tokyo) 55:571–576

    Article  CAS  Google Scholar 

  • Yuan L, Ji TF, Li CJ, Wang AG, Yang JB, Su YL (2009) Two new steroidal saponins from the seeds of Allium cepa L. J Asian Nat Prod Res 11:213–218

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Wang W, Han L, Rayburn ER, Hill DL, Wang H, Zhang R (2007) Isolation, structural determination, and evaluation of the biological activity of 20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol [20(S)-25-OCH3-PPD], a novel natural product from Panax notoginseng. Med Chem 3:51–60

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Zou K, Fushimi H, Cai S, Komatsu K (2004) Comparative study on triterpene saponins of ginseng drugs. Planta Med 70:666–677

    Article  PubMed  CAS  Google Scholar 

  • Zou K, Zhu S, Meselhy Tohda M, Cai S, Komatsu K (2002a) Dammarane-type saponins from Panax japonicus and their neurite outgrowth activity in SK-N-SH cells. J Nat Prod 65:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Zou K, Zhu S, Tohda C, Cai S, Komatsu K (2002b) Dammarane-type Triterpene Saponins from Panax japonicas. J Nat Prod 65:346–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahman, M., Jogaiah, S. (2020). Metabolic and Functional Diversity of Saponins. In: Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-61149-1_3

Download citation

Publish with us

Policies and ethics