Skip to main content

Transformation of the Built Environment for the Rehabilitation of Socially Disadvantaged City Districts

  • Conference paper
  • First Online:
Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment (CRIT-RE-BUILT 2019)

Abstract

The article brings an overview of the brownfield topic from a geotechnical point of view. A brownfield defines an non-utilized, dilapidated or ecological damaged property that lost its first function. Demand on the revitalization of such areas, especially within cities, is increasing. However, the revitalization often has to deal with geotechnical aspects as ground investigation, ground improvement or potential settlement of new buildings. Slope stability is also a big issue, especially in mining areas where the remediation of spoil heaps and open-pit excavations should come true. Various underground structures count as specific kinds of brownfields. The potential collapse of the underground structures, mostly unknown, accounts for a risk for existing buildings as well as for new projects. Revitalization of the brownfields is also an opportunity to employ smart city concepts. Geothermal energy is one of the geotechnical contributions to the topic of smart cities. The article illustrates the examined issues from the Czech Republic with an emphasis on Brno city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Úvod | BROWNFIELDY CZ. http://www.brownfieldy.eu. Accessed 14 May 2019

  2. Investment opportunities – Statutory city of Brno. https://www2.brno.cz/index.php?lan=en&nav01=20608&nav02=20621&nav03=22317. Accessed 14 May 2019

  3. Brno brownfields 2015. https://www.brno.cz/fileadmin/user_upload/Podnikatel/Brownfields/mmb_brownfields_EN_2015.pdf. Accessed 22 Jan 2020

  4. Obchodní centrum Galerie Vaňkovka. https://www.k4.cz/galerie-vankovka/t1064. Accessed 22 Jan 2020

  5. Sarsby, R.: Environmental geotechnics, 2nd edn. ICE Publishing, London (2013)

    Google Scholar 

  6. Piga, C., Piroddi, L., Pompianu, E., Ranieri, G., Stocco, S., Trogu, A.: Integrated geophysical and aerial sensing methods for archaeology: a case history in the punic site of Villamar (Sardinia, Italy). Remote Sens. 6(11), 10986–11012 (2014)

    Article  Google Scholar 

  7. Frýbová, P., Drápalová, R., Vlček, P., Lubojacký, O.: Předběžný IF a GF průzkum pro návrh GT a HG průzkumných prací na lokalitě Červený kopec: Závěrečná zpráva. VENTIMIGLIA s. r. o., Brno (2013)

    Google Scholar 

  8. Mei, Y., Hu, C.M., Wang, X.Y.: Experimental research on deep collapsible loess foundation treatment by dynamic compaction under super high fill. Appl. Mech. Mater. 256–259, 129–138 (2013)

    Google Scholar 

  9. Vaníček, I., Vaníček, M.: Earth Structures in Transport, Water and Environmental Engineering, 1st edn. Springer, The Netherlands (2008). https://doi.org/10.1007/978-1-4020-3964-5

    Book  MATH  Google Scholar 

  10. Watts, K., Charles, A.: Building on Fill: Geotechnical Aspects, 3rd edn. BRE Press, Watfords (2015)

    Google Scholar 

  11. Charles, J.A., Watts, K.S.: Building on Fill: Geotechnical Aspects, 2nd edn. BRE Press, London (2001)

    Google Scholar 

  12. Burland, J., Chapman, T., Skinner, H., Brown, M.: ICE Manual of Geotechnical Engineering: Volume II Geotechnical Design, Construction and Verification, 1st edn. ICE Publishing, London (2012)

    Book  Google Scholar 

  13. Kolymbas, D., Fellin, W.: Compaction of Soils, Granulates and Powders (Advances in Geotechnical Engineering and Tunneling), 1st edn. CRC Press, Boca Raton (2000)

    Google Scholar 

  14. Serridge, C.J., Synac O.: Application of the Rapid Impact Compaction (RIC) technique for risk mitigation in problematic soils. In: 10th Congress of the International Association for Engineering Geology and the Environment, IAEG 2006, p. 294. The Geological Society of London, London (2006)

    Google Scholar 

  15. Adam, D., Adam, C., Falkner, F.-J., Paulmichl, I.: Vibration emission induced by Rapid Impact Compaction. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, pp. 914–921 (2011)

    Google Scholar 

  16. Waddell, P.J., Moyle, R.A., Whiteley, R.J.: Geotechnical verification of impact compaction. WIT Trans. Ecol. Environ. 141, 73–85 (2010)

    Article  Google Scholar 

  17. Kirsch, F.: Vibro stone column installation and its effect on ground improvement. In: Proceedings of the Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment, Bochum, Germany, 23–24 March 2006, pp. 115–124. Taylor and Francis, London (2006)

    Google Scholar 

  18. Castro, J., Karstunen, M., Sivasithamparam, N.: Influence of stone column installation on settlement reduction. Comput. Geotech. 59, 87–97 (2014)

    Article  Google Scholar 

  19. Madhyannapu, R.S., Puppala, A.J., Nazarian, S., Yuan, D.: Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils. J. Geotech. Geoenviron. Eng. 136(1), 119–128 (2010)

    Article  Google Scholar 

  20. Sukontasukkul, P., Jamsawang, P.: Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Constr. Build. Mater. 29(1), 201–205 (2012)

    Article  Google Scholar 

  21. Koerner, R.M.: Designing with Geosynthetics, 5th edn. Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  22. Leiter, A.: Geothermal Energy – Influence of the Borehole Geometry (Doctoral Thesis). Brno University of Technology, Brno (2017)

    Google Scholar 

  23. Svahové nestability. https://mapy.geology.cz/svahove_nestability/. Accessed 22 Jan 2020

  24. iDNES.CZ. https://www.idnes.cz/zpravy/domaci/ze-silnice-v-hrensku-zmizi-spadla-skala.A120903_163652_usti-zpravy_alh. Accessed 22 Jan 2020

  25. Záruba, Q., Mencl, V.: Landslides and Their Control: Development in Geotechnical Engineering, 1st edn. Elsevier, Amsterdam (1982)

    Google Scholar 

  26. Chalmovský, J., et al.: Statistical-numerical analysis for pullout tests of ground anchors. Baltic J. Road Bridge Eng. 12(3), 145–153 (2017)

    Article  Google Scholar 

  27. Štefaňák, J., Miča, L.: Response surface method analysis of the ultimate capacity of intelligent composite anchoring element. In: Proceedings of the 16th Danube - European Conference on Geotechnical Engineering, 7–9 June 2018, pp. 785–790. Ernst & Sohn, Berlin (2018)

    Google Scholar 

  28. Boštík, J.: Stabilita mělce uložených podzemních děl. In: Geotechnika 2006, pp. 225–230. ORGware, Stupava (2006)

    Google Scholar 

  29. Miča, L. Boštík, J.: A study of the influence of protective curtains during the excavation of an underground structure in the urban area (2005, unpublished)

    Google Scholar 

  30. Závacký, M., Chalmovský, J., Štefaňák, J., Miča, L., Bílek, P.: Modelling of tunnel lining degradation. In: Road and Rail Infrastructure V, Proceedings of the Conference CETRA 2018, pp. 1499–1505. University of Zagreb, Zagreb (2018)

    Google Scholar 

  31. ISSMGE – TC307 Sustainability. https://www.issmge.org/committees/technical-committees/impact-on-society/sustainability. Accessed 20 Jan 2020

  32. Igwe, O., Chukwu, C.: Slope stability analysis of mine waste dumps at a mine site in Southeastern Nigeria. Bull. Eng. Geol. Env. 78(4), 2503–2517 (2018). https://doi.org/10.1007/s10064-018-1304-8

    Article  Google Scholar 

  33. Rybalchenko, S., Verhovov, K., Kudriavtcev, S., Kudryavtsev, S., Yoo, C., Zhussupbekov, A.: Landslides-flows on rock dumps of coal mining enterprises. In: MATEC Web of Conferences, vol. 265. EDP Sciences, Les Ulis Cedex (2019)

    Google Scholar 

  34. Novianti, V., Marrs, R.H., Choesin, D.N., Iskandar, D.T., Suprayogo, D.: Natural regeneration on land degraded by coal mining in a tropical climate: lessons for ecological restoration from Indonesia. Land Degrad. Dev. 29(11), 4050–4060 (2018)

    Article  Google Scholar 

  35. Chalmovský, J., Štefaňák, J., Miča, L.: An innovative approach to the design of ground anchors. In: 15th International SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining, vol. 1.2, pp. 25–35. SGEM World Science, Albena (2015)

    Google Scholar 

  36. Štefaňák, J., Miča, L., Chalmovský, J., Leiter, A., Tichý, P.: Full-scale testing of ground anchors in Neogene Clay. Procedia Eng. 172, 1129–1136 (2017)

    Article  Google Scholar 

  37. Štefaňák, J., Miča, L.: Design parameters assessment for ground anchors in tertiery fluvial clays. Eng. Struct. Technol. 3(6), 106–113 (2014)

    Google Scholar 

  38. Leiter, A., Štefaňák, J., Miča, L.: Development of automatic datalogger system for heavy dynamic penetrometer. In: 18th International SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining, vol. 1.3, pp. 287–294. SGEM World Science, Albena (2018)

    Google Scholar 

  39. Štefaňák, J., Miča, L.: Full-scale compaction testing of recycled demolition materials. In: 17th International SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining, vol. 17.41, pp. 99–106. SGEM World Science, Albena (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boštík, J., Štefaňák, J., Závacký, M. (2021). Transformation of the Built Environment for the Rehabilitation of Socially Disadvantaged City Districts. In: Rotaru, A. (eds) Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment. CRIT-RE-BUILT 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61118-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61118-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61117-0

  • Online ISBN: 978-3-030-61118-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics