Skip to main content

A Critical Review on Durability of Sustainable Materials and Structures

  • Conference paper
  • First Online:
Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment (CRIT-RE-BUILT 2019)

Abstract

This paper presents a critical review of the state-of-the-art on the context of sustainable renovation of buildings and infrastructures. After a short presentation of the method and the context of the study a chronological description is used to evocate the principal fields of research and engineering practices for design of sustainable and durable materials and structures, and for evaluation of the damage state materials and structures. The new trends on the durability of materials and structures developed or reinforced in a context of increasing societal requirements in terms of sustainability are treated along with traditional mechanistic approaches such as mechanics of failure, mechanics of damage, fatigue, environmental impact on the durability including thermal, hydric and chemical interactions. In particular, some technics used for the diagnostic of historical stone buildings are cited as an example of research/engineering practice on the durability of structures and materials. The new trends on sustainable materials design and their industrial use, including the green materials, bio-resourced materials for construction and insulation of buildings, recycled materials from buildings and infrastructures are evocated in conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SDKP: Sustainable Development Knowledge Platform (2019). https://sustainabledevelopment.un.org/. Accessed 01 Oct 2019

  2. Pelenc, J., Deduerware, T.: Weak Sustainability versus Strong Sustainability (2015). https://doi.org/10.13140/rg.2.1.3265.2009

  3. European Commission: Life cycle indicators for resources, products and waste. Report by the Joint Research Centre of the Europen Commission. Luxembourg: Publications Office of the European Union (2012)

    Google Scholar 

  4. Funtas, G., Polette, M., Rye, T., Tischer, V.: Environmental and economic assessment of traffic-related air pollution using aggregate spatial information: a case study of Balneário Camboriú, Brazil. J. Transp. Health 14, 100592 (2019)

    Article  Google Scholar 

  5. Leonard, A., Limbourg, S., Merchan, A.L., Mostert, M.: Life cycle externalities versus external costs: the case of inland freight transport in Belgium. Transp. Res. Part D: Transp. Environ. 67, 576–595 (2019)

    Article  Google Scholar 

  6. Daly, H.E.: Toward some operational principles of sustainable development. Ecol. Econ. 2(1), 1–6 (1990). https://doi.org/10.1016/0921-8009(90)90010-R

    Article  MathSciNet  Google Scholar 

  7. Belayachi, N., Boulnois, J., Hoxha, D.: Réhabilitation thermique d’une maison d’habitation en utilisant le biocomposite béton-paille. 35ème Rencontres Universitaires de Génie Civil, 22–24 Mai 2017, Nantes (2017)

    Google Scholar 

  8. Broard, Y., Belayachi, N., Hoxha, D., Ranganathan, N., Méo, N.: Mechanical and hygrothermal behaviour of clay-sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation. Constr. Build. Mater. 161, 196–207 (2018)

    Article  Google Scholar 

  9. Siegesmund, S., Snethlage, R. (eds.): Stone in Architecture, 4th edn. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-14475-2_1

  10. Pacheco-Torgal, F., Lourenço, … P. Chindaprasir, Eco-efficient Masonry Bricks and Blocks, Design, Properties and Durability. Woodhead Publishing (2015). ISBN 978-1-78242-305-8, 548 p. https://doi.org/10.1016/C2014-0-02158-2

  11. Belayachi, N., Hoxha, D., Slaimia, M.: Impact of accelerated climatic aging on the behaviour of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 125, 912–918 (2016)

    Article  Google Scholar 

  12. Pacheco F., Jalali T. S. (2016) Ecoefficient construction and building materials. Spring Edition, ISBN 978-0-85729-892-8, https://doi.org/10.1007/978-0-85729-892-8

  13. Joblot, L.: Contribution à la mise en œuvre du BIM en rénovation: proposition d’un Modèle de Maturité BIM spécifique, Ph.D. Ecole Nationale des Arts et Metiers ENSAM (2018). (in french)

    Google Scholar 

  14. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings: literature review and future needs. Autom. Constr. 38, 109–127 (2014)

    Article  Google Scholar 

  15. https://www.ademe.fr/sites/default/files/assets/documents/fiche-ravalement-refection-toiture-amenagement-travaux-isolation.pdf

  16. Pavanelli, D.D., Voulvoulis, N.: Habitat Equivalency Analysis, a framework for forensic cost evaluation of environmental damage. Ecosyst. Serv. 38, 100953 (2019). https://doi.org/10.1016/j.ecoser.2019.100953

    Article  Google Scholar 

  17. He, G., Li, J., Tam, V.W.Y., Wang, G., Zuo, J.: Stakeholders’ willingness to pay for the new construction and demolition waste landfill charge scheme in Shenzhen: a contingent valuation approach. Sustain. Cities Soc. 52, 101663 (2019). https://doi.org/10.1016/j.scs.2019.101663

    Article  Google Scholar 

  18. Bouasker, M., Belayachi, N., Hoxha, D., Al-Mukhtar, M.: Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials 7(4), 3034–3048 (2014)

    Article  Google Scholar 

  19. Belayachi, N., Bouasker, M., Hoxha, D., Al-Mukhtar, M.: Thermo-mechanical behaviour of an innovant straw lime composite for thermal insulation applications. Appl. Mech. Mater. 390, 542–546 (2013)

    Article  Google Scholar 

  20. Ismail, B., Belayachi, N., Hoxha, D.: Optimisation de la performance thermique d’un bio-composite à base de fibres végétales: étude expérimentale et numérique. Conférence Internationale Francophone NoMaD 2018, Liège Université 7–8 Novembre 2018 (2018)

    Google Scholar 

  21. Amziane, S., Arnaud, L.: Les bétons de granulats d’origine végétale: application au béton de chanvre. Edition Lavoisier, Paris (2013). ISBN 978-2-7462-3809-1

    Google Scholar 

  22. https://www.vicat.fr/content/download/91008/838050/file/CP_BIOSYS.PDF

  23. https://www.biofib.com/files/BIOFIB_TRIO-Avis_technique_CSTB_Murs.pdf

  24. Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides. Dunod (1996)

    Google Scholar 

  25. Grasberger, S., Meschke, G.: Thermo-hygro-mechanical degradation of concrete: From coupled 3D material modelling to durability oriented multifield structural analyses. Mater. Struct. Concrete Sci. Eng. 37, 244–256 (2004)

    Google Scholar 

  26. Zhao, C., Hobbs, B.E., Hornby, P., Ord, A., Peng, S., Liu, L.: Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Meth. Geomech. 32, 1107–1130 (2008). https://doi.org/10.1002/nag.661

    Article  MATH  Google Scholar 

  27. Eslami, J., Hoxha, D., Grgic, D.: Estimation of the damage of a porous limestone using continuous wave velocity measurements during uniaxial creep tests. Mech. Mater. 49, 51–65 (2012)

    Article  Google Scholar 

  28. Michel, L., Do, D.P., Coignard, B., Hoxha, D.: On the numerical evaluation of historical stone sculpture artwork restoration. Eur. J. Environ. Civ. Eng. (2014). https://doi.org/10.1080/19648189.2014.891471

    Article  Google Scholar 

  29. Bieniawski, Z.T.: Stability concept of brittle fracture propagation in rock. Eng. Geol. 2(3), 149–162 (1967). https://doi.org/10.1016/0013-7952(67)90014-2

    Article  Google Scholar 

  30. Sun, C.T., Jin, Z.H.: Fracture Mechanics, Academic Press (2012). Elsevier, ISBN 978-0-12-385001-0, 336 pg. https://doi.org/10.1016/C2009-0-63512-1

  31. Irwin, G.R.: Fracture Dynamics. Fracturing of Metals, American Society for Metals, Cleveland (1948)

    Google Scholar 

  32. Griffith, A.A.: Philosophical Transactions. Series A 221, 163–198 (1920)

    Google Scholar 

  33. Atkinson, B.: Subcritical crack growth in geological materials. J. Geophys. Res. 89(B6), 4077–4114 (1984)

    Article  Google Scholar 

  34. Stavros, K.K. (ed.): Fracture and Failure of Natural Building Stones: Applications in the Restoration of Ancient Monuments, Springer Science & Business Media (2007), 592 pg

    Google Scholar 

  35. Paris, Paul, C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. Trans. Am. Soc. Mech. Eng. 528–534 (1963)

    Google Scholar 

  36. NF EN 1990 Eurocode– Basis of structural Design – Annex A1, for Buildings

    Google Scholar 

  37. Yao, Y., Wang, L,. Wittmann, F., De Belie, N., Schlangen, E., Gehlen, C., Wang, Z, Eguez, H., Cao, Y., Yunus, B., Li, J.: Recommendation of RILEM TC 246-TDC: test methods to determine durability of concrete under combined environmental actions and mechanical load. Mater. Struct. 50, 155 (2017). https://doi.org/10.1617/s11527-017-1000-3

  38. RILEM Technical Committee: Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete. Mater. Struct. 43(9), 1187–1189 (2010). 10.1617/s11527-010-9640-6

    Google Scholar 

  39. RILEM TC 177-MDT: Test method recommendations of RILEM TC 177-MDT ‘Masonry durability and on-site testing’ -D.5: In-situ stress - strain behaviour tests based on the flat jack. Mater. Struct. 37(271), 497–501 (2004)

    Google Scholar 

  40. TC 129-MHT:Test methods for mechanical properties of concrete at high temperatures Recommendations: Part 7: Transient Creep for service and accident conditions. Mater. Struct. 31(209), 290–295 (1998)

    Google Scholar 

  41. EN 1991-2:2003 Eurocode 1: Actions on structures -Part 2: Traffic loads on bridges

    Google Scholar 

  42. Katpady, D.N., Hazehara, H., Soeda, M. et al.: Int. J. Concr. Struct. Mater. 12, 30 (2018). https://doi.org/10.1186/s40069-018-0260-9

  43. Zaharieva, R., Buyle-Bodin, F., Skoczylas, F., Wirquin, E.: Assessment of the surface permeation properties of recycled aggregate concrete. Cement Concr. Compos. 25, 223–232 (2003)

    Article  Google Scholar 

  44. Molina, E.G., Sebastián, E., Alonso, F.J.: Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J. Geophys. Eng. 10, 035003 (2013). https://doi.org/10.1088/1742-2132/10/3/035003

  45. Cheng, Y.C., Guo, H.B., Wang, X.Q., Jiao, Y.B.: Durability assessment of reinforced concrete bridge based on fuzzy neural networks. Adv. Mater. Res. 838–841, 1069–1072 (2014)

    Google Scholar 

  46. EL-Bashir, S., Althumairi, N., Alzayed, N.: Durability and mechanical performance of PMMA/Stone sludge nanocomposites for acrylic solid surface applications. Polymers (Basel), 9(11), 604 (2017). https://doi.org/10.3390/polym9110604

  47. Purcell, C.E.: Deep Energy Renovation of Traditional Buildings: Addressing Knowledge Gaps and Skills Training in Ireland (2018). https://www.heritagecouncil.ie/

  48. DIRECTIVE 2010/31/EU: European Council Directive of the European Parliament and of the Council on the Energy Performance of Buildings (Recast) PE-CONS 15/10, ENER 131 ENV 255, CODEC 382 (2010)

    Google Scholar 

  49. EN 16883:2017: Conservation of cultural heritage - Guidelines for improving the energy performance of historic buildings (2017)

    Google Scholar 

  50. EN 15026:2007: Hygrothermal Performance of Building Components and Building Elements -Assessment of Moisture Transfer by Numerical Assessment (2007)

    Google Scholar 

  51. EN 15978:2011: Sustainability of Construction Works -Assessment of Environmental Performance of Buildings -Calculation Method (2011)

    Google Scholar 

  52. Lee, J., Mahendra, S., Alvarez, P.J.: Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 4(7), 3580–3590 (2011). https://doi.org/10.1021/nn100866w

  53. Hincapiéa, I., Caballero-Guzmana, A., Hiltbrunnerb, D., Nowack, B.: Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Manag 43, 398–406 (2015)

    Article  Google Scholar 

  54. ICOMOS, International Council for Monuments and Sites https://www.icomos.org/en

  55. SCI Steel Construction Institut https://www.steel-sci.com/

  56. Janjua, S.Y., Sarker, P.K., Biswas, W.K.: A review of residential buildings’ sustainability performance using a life cycle assessment approach. J. Sustain. Res. 1, e190006 (2019). https://doi.org/10.20900/jsr20190006

  57. Interaction Design Foundation: https://www.interaction-design.org/

  58. Marjaba, G.E., Chidiac, S.E.: Sustainability and resiliency metrics for buildings—critical review. Build. Environ. 101, 116–125 (2016)

    Article  Google Scholar 

  59. Coussy, O.: Poromechanics. Wiley (2004). ISBN 0-470-84920-7, 312 pp

    Google Scholar 

  60. Dormieux, L., Kondo, D., Ulm, F.: Microporomechanics. Wiley Blackwell (2006). ISBN 9780470031889, 344 pg

    Google Scholar 

  61. Hoxha, D., Homand, F., Auvray, C.: Deformation on natural gypsum rock: mechanisms and questions. Eng. Geol. 86(1), 1–17 (2006)

    Article  Google Scholar 

  62. Hoxha, D., Homand, F., Giraud, A., Auvray, C.: Saturated and unsaturated behaviour modelling of Meuse-Haute/Marne argillite. Int. J. Plast 23, 733–766 (2007)

    Article  MATH  Google Scholar 

  63. Auvray, C., Homand, F., Hoxha, D.: The influence of relative humidity on the rate of convergence in an underground gypsum mine, Int. J. Rock Mech. Min. Sci. 45(8), 1454–1468 (2008)

    Article  Google Scholar 

  64. Belayachi, N., Do, D.P., Hoxha, D.: Thermo-hydro-mechanical behavior of a tuffeau stone masonry. Eur. J. Environ. Civ. Eng. 16(5), 557–570 (2012)

    Article  Google Scholar 

  65. Hoxha, D., Belayachi, N., Do, D.P.: On Thermo-Hydro-Mechanical (THM) fatigue damage of historical stone buildings. Adv. Mater. Res. 891, 36–41 (2014)

    Article  Google Scholar 

  66. Belayachi, N., Hoxha, D.: Damage of historical stone masonry buildings: combined effects of spatial variability of stone properties and environmental condition. J. Civ. Eng. Archit. 10, 743–754 (2016)

    Google Scholar 

  67. Janvier-Badosa, S., Beck, K., Brunetaud, X., Al-Mukhtar, M.: Historical study of chambord castle: basis for establishing the monument health record. Int. J. Archit. Heritage 7(3), 247–260 (2013). https://doi.org/10.1080/15583058.2011.634959

    Article  Google Scholar 

  68. Al-Omari, A., Brunetaud, X., Beck, K., Al-Mukhtar, M., Street, M.: Hygrothermal stress and damage risk in the stones of the Castle of Chambord-France. Int. J. Civ. Struct. Eng. 4(3), 402–18 (2014)

    Google Scholar 

  69. Brunetaud, X., Luca, L.D., Janvier-Badosa, S., Beck, K., Al-Mukhtar, M.: Application of digital techniques in monument preservation. Eur. J. Environ. Civ. Eng. 16(5), 543–556 (2012)

    Article  Google Scholar 

  70. Deacon, D.H.: The durability of steel structures in different environments. In: Durability of materials and structures in Buildings and Civil Engineering, Whittles Publishing (2006). ISBN 1-870325-58-3, 474 pp

    Google Scholar 

  71. Janvier-Badosa, S., Beck, K., Brunetaud, X., Al-Mukhtar, M.: The occurrence of gypsum in the scaling of stones at the Castle of Chambord (France). Environ. Earth Sci. 71(11), 4751–4759 (2014)

    Google Scholar 

  72. Delgado, J.M.P.Q. (ed.): New Approaches to Building Pathology and Durability, Building Pathology and Rehabilitation 6, https://doi.org/10.1007/978-981-10-0648-7_2

  73. Siegesmund, S., Snethlage, R. (eds.): Stone in Architecture: Properties and Durability, vol. 227, 4th edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14475-2_4

  74. Robador, M.D., Arroyo, F., Perez-Rodriguez, J.L.: Study and restoration of the Seville City Hall façade. Constr. Build. Mater. 53, 370–380 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.088

    Article  Google Scholar 

  75. Tortora, M., Sfarra, S., Chiarini, M., Daniele, V., Taglieri, G., Cerichelli, G.: Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings. Appl. Surf. Sci. 387, 971–985 (2016). https://doi.org/10.1016/j.apsusc.2016.07.023

    Article  Google Scholar 

  76. Kilic, G.: Using advanced NDT for historic buildings: towards an integrated multidisciplinary health assessment strategy. J. Cult. Heritage 16(4), 526–535 (2015). https://doi.org/10.1016/j.culher.2014.09.010

    Article  Google Scholar 

  77. McCann, D.M., Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT and E Int. 34(2), 71–84 (2001). https://doi.org/10.1016/S0963-8695(00)00032-3

    Article  Google Scholar 

  78. Sýkora, M., Diamantidis, D., Holický, M., Marková, J., Rózsás, Á.: Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Constr. Build. Mater. 193, 196–210 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.180

    Article  Google Scholar 

  79. Sena da Fonseca, B., Ferreira Pinto, A.P., Piçarra, S., Montemor, M.F.: Artificial aging route for assessing the potential efficacy of consolidation treatments applied to porous carbonate stones. Mater. Des. 120, 10–21 (2017). https://doi.org/10.1016/j.matdes.2017.02.001

  80. Duarte, R., Flores-Colen, I., de Brito, J., Hawreen, A.: Variability of in-situ testing in wall coating systems - Karsten tube and moisture meter techniques. J. Build. Eng. 27 (2020). https://doi.org/10.1016/j.jobe.2019.100998

  81. Manohar, S., Bala, K., Santhanam, M., Menon, A.: Characteristics and deterioration mechanisms in coral stones used in a historical monument in a saline environment. Constr. Build. Mater. 241 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118102

  82. Hassine, M.A., Beck, K., Brunetaud, X., Al-Mukhtar, M.: Use of electrical resistance measurement to assess the water saturation profile in porous limestones during capillary imbibition. Constr. Build. Mater. 165, 206–217 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.238

    Article  Google Scholar 

  83. Alderete, N., Villagrán Zaccardi, Y., Snoeck, D., Van Belleghem, B., Van den Heede, P., Van Tittelboom, K., De Belie, N.: Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis. Cement Concr. Res. 118, 57–68 (2019). https://doi.org/10.1016/j.cemconres.2019.02.011

  84. Khodeir, L.M., Aly, D., Tarek, S.: Integrating HBIM (Heritage Building Information Modeling) Tools in the Application of Sustainable Retrofitting of Heritage Buildings in Egypt. Procedia Environ. Sci. 34, 258–270 (2016). https://doi.org/10.1016/j.proenv.2016.04.024

  85. Fryskowska, A., Stachelek, J.: A no-reference method of geometric content quality analysis of 3D models generated from laser scanning point clouds for HBIM. J. Cult. Heritage 34, 95–108 (2018). https://doi.org/10.1016/j.culher.2018.04.003

    Article  Google Scholar 

  86. Monego, M., Menin, A., Fabris, M., Achilli, V.: 3D survey of Sarno Baths (Pompeii) by integrated geomatic methodologies. J. Cult. Heritage 40, 240–246 (2019). https://doi.org/10.1016/j.culher.2019.04.013

    Article  Google Scholar 

  87. Islam, S., Bhat, G.: Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. J. Environ. Manage. 251 (2019). https://doi.org/10.1016/j.jenvman.2019.109536

  88. https://onpe.org/news/precarite_energetique_combien_de_personnes_peinent_chauffer_leur_logement

  89. https://www.ademe.fr/sites/default/files/assets/documents/fiche-ravalement-refection-toiture-amenagement-travaux-isolation.pdf

  90. https://ec.europa.eu/environment/integration/research/newsalert/pdf/26si_en.pdf

  91. https://www.batimentbascarbone.org/renovation-bas-carbone/

  92. Sierra-érez, J., et al.: Environmental implications of cork as thermal insulation in façade retrofits. 10th Conference on Advanced Building Skins, 126 (2015)

    Google Scholar 

  93. Millogo, Y., Morel, J.-C., Aubert, J-E., Ghavami, K.: Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 52, 71–78 (2014)

    Google Scholar 

  94. Tonoli, G.H.D., Santos, S.F., Savastano, H., Delvasto, S., Mejiade Gutierrez, R., Lopez de Murphy, M.-del-M.: Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cement Concr. Compos. 33, 225-232 (2011)

    Google Scholar 

  95. Alix, S., Philippe, E., Bessadok, A., Lebrun, L., Morvan, C., Marais, S.: Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresour. Technol. 100, 4742–4749 (2009)

    Article  Google Scholar 

  96. Palumbo, M., Avellaneda, J., Lacasta, A.M.: Availability of crop by-products in Spain: new raw materials for natural thermal insulation. Resour. Conserv. Recycl. 99, 1–6 (2015)

    Article  Google Scholar 

  97. Recherche, F., Bewa, H., Angers, A.: Evaluation de la disponibilité et de l ’ accessibilité de fibres végétales à usages matériaux en France Assessment of natural fibres availability and accessibility for material uses in France Remerciements. Recherche (2011)

    Google Scholar 

  98. Yates, T.: The use of non-food crops in the UK construction industry. J. Sci. Food. Agr. 86, 1790–6 (2006)

    Article  Google Scholar 

  99. Asdrubali, F., D’Alessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015)

    Google Scholar 

  100. Sharma, V., Marwaha, B.M., Vinayak, H.K.: Enhancing durability of adobe by natural reinforcement for propagating sustainable mud housing. Int. J. Sustain. Built Environ. 5(1), 141–155 (2016)

    Article  Google Scholar 

  101. Dieye, Y., Sambou, V., Faye, M., Thiam, A., Adj, M., Azilinon, D.: Thermo-mechanical characterization of a building material based on Typha Australis. J. Build. Eng. 9, 142–146 (2017)

    Google Scholar 

  102. Calatan, G., Hegyi, A., Dico, C., Mircea, C.: Determining the optimum addition of vegetable materials in adobe bricks. Procedia Technol. 22, 259–265 (2016)

    Google Scholar 

  103. Ali, M., Chouw, N.: Experimental investigations on coconut-fibre rope tensils strength and pullout from coconut fibre reinforced concrete. Constr. Build. Mater. 41, 681–690 (2013)

    Article  Google Scholar 

  104. Ramli, M., Kwan, W.H., Abas, N.-F.: Strength and durability of coconut-fiber-reinforced concrete in aggressive environments. Constr. Build. Mater. 38, 554–566 (2013)

    Article  Google Scholar 

  105. Guozhong, L., Yanzhen, Y., Jianquan, L., Changchun, L., Yingzi, W.: Research on adaptability between crop-stalk fibers and cement. Cem. Concr. Res. 34, 1081–1085 (2004)

    Article  Google Scholar 

  106. Madhoushi, M., Nadalizadeh, H., Ansell, M.P.: Withdrawal strength of fasteners in rice straw fibre-thermoplastic composites under dry and wet conditions. Polym. Test. 28, 301–306 (2009)

    Article  Google Scholar 

  107. Chen, X., Yu, J., Zhang, Z., Lu, C.: Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 85, 245–250 (2011)

    Article  Google Scholar 

  108. Cerezo, V.: Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales: approche expérimentale et modélisation théorique. Ph.D. thesis of INSA-Lyon, p. 242 (2005)

    Google Scholar 

  109. Bevan, R., Woolley, T.: Hemp lime construction- A guide to building with hemp lime composites. Build. Res. Establ. 110 (2008)

    Google Scholar 

  110. Bruijn, P.B., Jeppsson, K.H., Saudin, K., Nilsson, C.: Mechanical properties of lime hemp concrete containing shives and fibres. Biosys. Eng. 103, 474–479 (2009)

    Article  Google Scholar 

  111. Ashour, T., Wieland, H., Georg, H., Bockisch, F.J., Wu, W.: The influence of natural reinforcement fibers on insulation values of earth plaster for straw bale buildings. Mater. Des. 31, 4676–4685 (2010)

    Article  Google Scholar 

  112. Ashour, T., Goerg, H., Wu, W.: An experimental investigation on equilibrium moisture content of earth plaster with natural reinforcement fibers for straw bale buildings. Appl. Therm. Eng. 31, 293–303 (2011)

    Article  Google Scholar 

  113. Van de Lindt, J.W., Carraro, J.A.H., Heyliger, P.R., Choi, C.: Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings. Resour. Conserv. Recycl. 52, 1235–1240 (2008)

    Article  Google Scholar 

  114. Haapio, A., Viitaniemi, P.: Environmental effect of structural solutions and building materials to a building. Environ. Impact Assesment Rev. 28, 587–600 (2008)

    Article  Google Scholar 

  115. Almalkawi, A.T., Soroushian, P., Shrestha, S.S.: Evaluation of the energy efficiency of an aerated slurry-infiltrated mesh building system with biomass-based insulation. Renew. Energy 133, 797–806 (2019)

    Google Scholar 

  116. Huang, H., Zhou, Y., Huang, R., Wu, H., Sun, Y., Huang, G., Xu, T.: Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate 52 (2020). https://doi.org/10.1016/j.scs.2019.101840

  117. Marouen, S., Naima, B., Dashnor, H.: In situ performance assessment of a bio-sourced insulation material from an inverse analysis of measurments on a demonstrator building. EBUILT 2016, 16–19 November, Iasi (Romania) (2016)

    Google Scholar 

  118. Wei, J., Meyer, C.: Degradation rate of natural fiber in cement composites exposed to various accelerated aging environment conditions. Corros. Sci. 88, 118–132 (2014)

    Article  Google Scholar 

  119. Toledo Filho, R.D., Scrivener, K., England, G.L., Ghavami, K.: Durability of alkali-sensitive sisal and coconut fibers in cement mortar composites. Cement Concr. Composit. 22, 127–143 (2000)

    Google Scholar 

  120. Lideôw, S., Ôrn, T., Luciani, A., Rizzo, A.: Energy-efficiency measures for heritage buildings: a literature review. Sustain. Cities Soc. 45, 231–242 (2019)

    Article  Google Scholar 

  121. Robert, W., Piotr, K.: On rehabilitation of building with historical. Energy Procedia 132, 927–932 (2017)

    Article  Google Scholar 

  122. Rathorea, M., Ahmada, A., Paula, A., Seungmin Rhob, S.: Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Comput. Netw. 101, 63–80 (2016)

    Article  Google Scholar 

  123. Mathew, P.A., Dunn, L.N., Sohn, M.D., Mercado, A., Custudio, C., Walter, T.: Big-data for building energy performance: Lessons from assembling a very

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashnor Hoxha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoxha, D., Belayachi, N., Brunetaud, X., Rémond, S. (2021). A Critical Review on Durability of Sustainable Materials and Structures. In: Rotaru, A. (eds) Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment. CRIT-RE-BUILT 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61118-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61118-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61117-0

  • Online ISBN: 978-3-030-61118-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics