Skip to main content

HCC: 100 Gbps AES-GCM Encrypted Inline DMA Transfers Between SGX Enclave and FPGA Accelerator

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12282))

Included in the following conference series:

Abstract

This paper describes a Heterogeneous Confidential Computing (HCC) system composed of a CPU Trusted Computing Environment and a hardware accelerator. We implement two AES-GCM hardware engines with high-bandwidth and low-latency that are designed for end-to-end encryption of DMA transfers. Our solution minimizes changes to the hardware platform and to the application and SW stack. We prototyped and report the performance of protected image classification with proposed encrypted-DMA on an Intel Arria-10 FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azure Confidential Computing. https://azure.microsoft.com/en-us/solutions/confidential-compute/

  2. Google: Advancing confidential computing with asylo. https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge

  3. IBM cloud data shield. https://www.ibm.com/cloud/blog/announcements/announcing-ibm-cloud-data-shield-experimental

  4. McKeen, F., et al.: Innovative instructions and software model for isolated execution. In: HASP 2013, pp. 1–8 (2013)

    Google Scholar 

  5. Volos, S., Vaswani, K., Bruno, R.: Graviton: trusted execution environments on GPUs. In: Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2018) (2018)

    Google Scholar 

  6. Jang, I., Kim, T., Sethumadhavan, S., Huh, J.: Heterogeneous isolated execution for commodity GPUs. In: ASPLOS 2019, 13–17 April (2019)

    Google Scholar 

  7. Chung, E., et al.: Serving DNNs in real time at datacenter scale with project brainwave. IEEE Micro 38, 8–20 (2018)

    Article  Google Scholar 

  8. Intel® Distribution of OpenVINO™ toolkit. https://software.intel.com/en-us/openvino-toolkit

  9. Intel® Acceleration Stack for Intel Xeon® CPU with FPGA. https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/acceleration-stack.html

  10. Intel® Programmable Accelerator Card with Intel Arria® 10 FPGA. https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/overview.html

  11. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_27

    Chapter  Google Scholar 

  12. IEEE: IEEE Standard for Local and metropolitan area networks–Media Access Control (MAC) Security Amendment 1: Galois Counter Mode–Advanced Encryption Standard– 256 (GCM-AES-256) Cipher Suite.Satoh, A.: High-speed hardware architectures for authenticated encryption mode GCM. IEEE ISCAS (2006)

    Google Scholar 

  13. Crenne, J., Cotret, P., Gogniat, G., Tessier, R., Diguet, J.: Efficient key-dependent message authentication in reconfigurable hardware. In: International Conference on Field Programmable Technology (FPT), pp. 1–6 (2011)

    Google Scholar 

  14. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: Authenticated encryption on FPGAs from the static part to the reconfigurable part. Microprocess. Microsyst. 38, 526–538 (2014)

    Article  Google Scholar 

  15. Zhou, G., Michalik, H., Hinsenkamp, L.: Improving throughput of AES-GCM with pipelined Karatsuba multipliers on FPGAs. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp. 193–203. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00641-8_20

    Chapter  Google Scholar 

  16. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: AES-GCM and AEGIS: efficient and high speed hardware implementations. J. Sig. Process. Syst. 88(1), 1–12 (2016). https://doi.org/10.1007/s11265-016-1104-y

    Article  Google Scholar 

  17. Mathew, S., et al.: 53 Gbps native GF(24)2 composite-field AES-Encrypt/Decrypt accelerator for content-protection in 45 nm high-performance microprocessors. J. Solid-State Circuits 46(4), 767–776 (2011)

    Article  Google Scholar 

  18. Gueron, S., Mathew, S.: Hardware implementation of AES using area-optimal polynomials for composite-field representation GF(2^4)^2 of GF(2^8). In: ARITH 2016, pp. 112–117 (2016)

    Google Scholar 

  19. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H., Paterson, K.G.: Pushing the limits: a very compact and a threshold implementation of AES. In: EUROCRYPT (2016)

    Google Scholar 

  20. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_17

    Chapter  Google Scholar 

  21. Baby Chellam, M., Natarajan, R.: AES hardware accelerator on FPGA with improved throughput and resource efficiency. Arab. J. Sci. Eng. 43, 6873–6890 (2018)

    Article  Google Scholar 

  22. Luebbeers, E., Liu, S., Chu, M.: Simplify software integration for FPGA accelerators with OPAE Whitepaper. https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf

  23. Martinasek, Z., et al.: 200 Gbps hardware accelerated encryption system for FPGA network cards. In: Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security (ASHES@CCS), pp. 11–17. ACM (2018)

    Google Scholar 

  24. Buhrow, B., Fritz, K., Gilbert, B., Daniel, E.: A highly parallel AESGCM core for authenticated encryption of 400 Gb/s network protocols. In: 2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–7 (2015)

    Google Scholar 

  25. Koteshwara, S., Das, A., Parhi, K.K.: FPGA implementation and comparison of AES-GCM and Deoxys authenticated encryption schemes. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017)

    Google Scholar 

  26. Lemsitzer, S., Wolkerstorfer, J., Felber, N., Braendli, M.: Multi-gigabit GCM-AES architecture optimized for FPGAs. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 227–238. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_16

    Chapter  Google Scholar 

  27. Vliegen, J., Reparaz, O., Mentens, N.: Maximizing the throughput of threshold-protected AES-GCM implementations on FPGA. In: 2017 IEEE 2nd International Verification and Security Workshop (IVSW), pp. 140–145 (2017). https://doi.org/10.1109/ivsw.2017.8031559

  28. Vliegen, J., Reparaz, O., Mentens, N.: Maximizing the throughput of threshold-protected AES-GCM implementations on FPGA. In: 2017 IEEE 2nd International Verification and Security Workshop (IVSW), pp. 140–145 (2017)

    Google Scholar 

  29. Martinasek, Z., Hajny, J., Malina, L., Matousek, D.: Hardware-accelerated encryption with strong authentication. Secur. Protect. Inf. 1, 5 (2017)

    Google Scholar 

  30. Lu, T., Kenny, R., Atsatt, S.: Secure device manager for Intel® Stratix® 10 Devices Provides FPGA and SoC Whitepaper

    Google Scholar 

  31. Graphene - a Library OS for Unmodified Applications. https://grapheneproject.io/. Accessed 2020

  32. Confidential Computing Consortium. https://confidentialcomputing.io/. Accessed 09 July 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kida, L., Desai, S., Trivedi, A., Lal, R., Scarlata, V., Ghosh, S. (2020). HCC: 100 Gbps AES-GCM Encrypted Inline DMA Transfers Between SGX Enclave and FPGA Accelerator. In: Meng, W., Gollmann, D., Jensen, C.D., Zhou, J. (eds) Information and Communications Security. ICICS 2020. Lecture Notes in Computer Science(), vol 12282. Springer, Cham. https://doi.org/10.1007/978-3-030-61078-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61078-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61077-7

  • Online ISBN: 978-3-030-61078-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics