Skip to main content

Combined Estimation of Shape and Pose for Statistical Analysis of Articulating Joints

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12474))

Included in the following conference series:

Abstract

Quantifying shape variations in articulated joints is of utmost interest to understand the underlying joint biomechanics and associated clinical symptoms. For joint comparisons and analysis, the relative positions of the bones can confound subsequent analysis. Clinicians design specific image acquisition protocols to neutralize the individual pose variations. However, recent studies have shown that even specific acquisition protocols fail to achieve consistent pose. The individual pose variations are largely attributed to the day-to-day functioning of the patient, such as gait during walk, as well as interactions between specific morphologies and joint alignment. This paper presents a novel two-step method to neutralize such patient-specific variations while simultaneously preserving the inherent relationship of the articulated joint. The resulting shape models are then used to discover clinically relevant shape variations in a population of hip joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thanks to Dr. Tokunaga and Keisuke Uemura for data collection and providing this dataset.

References

  1. Agrawal, P., Whitaker, R.T., Elhabian, S.Y.: Learning deep features for automated placement of correspondence points on ensembles of complex shapes. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 185–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_22

    Chapter  Google Scholar 

  2. Audenaert, E., Van den Eynde, J., de Almeida, D., Steenackers, G., Vandermeulen, D., Claes, P.: Separating positional noise from neutral alignment in multicomponent statistical shape models. Bone Rep. 12, 100243 (2020)

    Article  Google Scholar 

  3. Beaulé, P.E., et al.: Unravelling the hip pistol grip/cam deformity: origins to joint degeneration. J. Orthop. Res.® 36(12), 3125–3135 (2018)

    Article  Google Scholar 

  4. Bhalodia, R., Dvoracek, L.A., Ayyash, A.M., Kavan, L., Whitaker, R., Goldstein, J.A.: Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J. Craniofac. Surg. 31(3), 697–701 (2020)

    Article  Google Scholar 

  5. Bindernagel, M., Kainmueller, D., Seim, H., Lamecker, H., Zachow, S., Hege, H.C.: An articulated statistical shape model of the human knee. In: Bildverarbeitung für die Medizin 2011, pp. 59–63. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19335-4_14

  6. Bossa, M.N., Olmos, S.: Statistical model of similarity transformations: building a multi-object pose. In: CVPRW 2006, p. 59. IEEE (2006)

    Google Scholar 

  7. Bossa, M.N., Olmos, S.: Multi-object statistical pose+shape models. In: ISBI, pp. 1204–1207 (2007)

    Google Scholar 

  8. Bryan, R., Nair, P.B., Taylor, M.: Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J. Biomech. 42(13), 2171–2176 (2009)

    Article  Google Scholar 

  9. Cates, J., et al.: Computational shape models characterize shape change of the left atrium in atrial fibrillation. Clin. Med. Insights Cardiol. 8, 99–109 (2014). CMC-S15710

    Google Scholar 

  10. Cates, J., Elhabian, S., Whitaker, R.: Shapeworks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  11. Cates, J., Fletcher, P.T., Styner, M., Hazlett, H.C., Whitaker, R.: Particle-based shape analysis of multi-object complexes. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 477–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_57

    Chapter  Google Scholar 

  12. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_28

    Chapter  Google Scholar 

  13. Datar, M., Lyu, I., Kim, S.H., Cates, J., Styner, M.A., Whitaker, R.: Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 19–26. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_3

    Chapter  Google Scholar 

  14. Fouefack, J.R., Alemneh, T., Borotikar, B., Burdin, V., Douglas, T.S., Mutsvangwa, T.: Statistical shape-kinematics models of the skeletal joints: application to the shoulder complex. In: EMBC, pp. 4815–4818 (2019)

    Google Scholar 

  15. Fouefack, J.R., Borotikar, B., Douglas, T.S., Burdin, V., Mutsvangwa, T.E.M.: Dynamic multi-object Gaussian process models: a framework for data-driven functional modelling of human joints (2020)

    Google Scholar 

  16. Galloway, F., et al.: A large scale finite element study of a cementless osseointegrated tibial tray. J. Biomech. 46(11), 1900–1906 (2013)

    Article  Google Scholar 

  17. Goparaju, A., et al.: On the evaluation and validation of off-the-shelf statistical shape modeling tools: a clinical application. In: Reuter, M., et al. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 14–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_2

    Chapter  Google Scholar 

  18. Gorczowski, K., et al.: Statistical shape analysis of multi-object complexes. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  19. Gower, J.C.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975). https://doi.org/10.1007/BF02291478

    Article  MathSciNet  MATH  Google Scholar 

  20. Harris, M.D., Datar, M., Whitaker, R.T., Jurrus, E.R., Peters, C.L., Anderson, A.E.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop. Res. 31(10), 1620–1626 (2013)

    Article  Google Scholar 

  21. Kainmueller, D., Lamecker, H., Zachow, S., Hege, H.C.: An articulated statistical shape model for accurate hip joint segmentation. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6345–6351. IEEE (2009)

    Google Scholar 

  22. Kozic, N., et al.: Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets. Med. Image Anal. 14(3), 265–275 (2010)

    Article  Google Scholar 

  23. Smoger, L.M.: Statistical modeling to characterize relationships between knee anatomy and kinematics. J. Orthop. Res.® 33(11), 1620–1630 (2015)

    Article  Google Scholar 

  24. Uemura, K., Atkins, P.R., Maas, S.A., Peters, C.L., Anderson, A.E.: Three-dimensional femoral head coverage in the standing position represents that measured in vivo during gait. Clin. Anat. 31(8), 1177–1183 (2018)

    Article  Google Scholar 

  25. Wang, D., Shi, L., Griffith, J.F., Qin, L., Yew, D.T., Riggs, C.M.: Comprehensive surface-based morphometry reveals the association of fracture risk and bone geometry. J. Orthop. Res. 30(8), 1277–1284 (2012)

    Article  Google Scholar 

  26. Zhao, Z., Taylor, W.D., Styner, M., Steffens, D.C., Krishnan, K.R.R., MacFall, J.R.: Hippocampus shape analysis and late-life depression. PLoS ONE 3(3), e1837 (2008)

    Article  Google Scholar 

Download references

Funding Acknowledgments

This work was supported by the National Institutes of Health under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, NHLBI-R01HL135568, NIBIB-R01EB016701, and NIGMS-P41GM103545. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praful Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, P., Mozingo, J.D., Elhabian, S.Y., Anderson, A.E., Whitaker, R.T. (2020). Combined Estimation of Shape and Pose for Statistical Analysis of Articulating Joints. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds) Shape in Medical Imaging. ShapeMI 2020. Lecture Notes in Computer Science(), vol 12474. Springer, Cham. https://doi.org/10.1007/978-3-030-61056-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61056-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61055-5

  • Online ISBN: 978-3-030-61056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics