Skip to main content

Understanding the Complementarities of Environmental Footprints and Planetary Boundaries

  • Chapter
  • First Online:
Environmental Footprints

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

While in recent years both environmental footprints and planetary boundaries have gained tremendous popularity throughout the ecological and environmental sciences, their relationship remains largely unexplored. By investigating the roots and developments of environmental footprints and planetary boundaries, this chapter challenges the isolation of the two research fields and provides novel insights into the complementary use of them. Our analysis demonstrates that knowledge of planetary boundaries improves the policy relevance of environmental footprints by providing a set of consensus-based estimates of the regenerative and absorptive capacity at the global scale and, in reverse, that the planetary boundaries framework (PBF) benefits from well-grounded footprint models which allow for more accurate and reliable estimates of human pressure or impact on the planet’s environment. A framework for integration of environmental footprints and planetary boundaries is thus proposed, which lays the foundation for evolving environmental impact assessment to environmental sustainability assessment aimed at measuring the sustainability gap between current magnitudes of human activities and associated capacity thresholds. This chapter also proposes a research agenda that will further scientific discussions on how to set practical and tangible policy targets for adaptation and mitigation of worldwide environmental unsustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlroth S (2014) The use of valuation and weighting sets in environmental impact assessment. Resour Conserv Recycl 85:34–41

    Article  Google Scholar 

  • Allen M (2009) Tangible targets are critical. Nature Rep Climate Change 3:114–115

    Article  Google Scholar 

  • Barbier EB, Burgess JC, Folke C (1994) Paradise lost?—The ecological economics of biodiversity. Earthscan, London, UK

    Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  Google Scholar 

  • Biermann F (2012) Planetary boundaries and earth system governance: exploring the links. Ecol Econ 81:4–9

    Article  Google Scholar 

  • Borucke M, Moore D, Cranston G, Gracey K, Iha K, Larson J, Lazarus E, Morales JC, Wackernagel M, Galli A (2013) Accounting for demand and supply of the biosphere’s regenerative capacity: the National Footprint Accounts’ underlying methodology and framework. Ecol Ind 24:518–533

    Article  Google Scholar 

  • Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L (2013) Does the terrestrial biosphere have planetary tipping points? Trends Ecol Evol 28:396–401

    Article  Google Scholar 

  • Catton W (1986) Carrying capacity and the limits to freedom. Soc Ecol Session 1:XI. World Congress of Sociology. New Delhi, India

    Google Scholar 

  • Costanza R (2000) The dynamics of the ecological footprint concept. Ecol Econ 32:341–345

    Google Scholar 

  • Costanza R, Patten BC (1995) Defining and predicting sustainability. Ecol Econ 15:193–196

    Article  Google Scholar 

  • Daily GC, Ehrlich PR (1992) Population, sustainability, and Earth’s carrying capacity. Bioscience 42:761–771

    Article  Google Scholar 

  • Daly HE (1990) Toward some operational principles of sustainable development. Ecol Econ 2:1–6

    Article  Google Scholar 

  • De Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402

    Article  Google Scholar 

  • Ehrlich PR (1982) Human carrying capacity, extinctions, and nature reserves. Bioscience 32:331–333

    Article  Google Scholar 

  • Erb K-H, Haberl H, Defries R, Ellis EC, Krausmann F, Verburg PH (2012) Pushing the planetary boundaries. Science 338:1419–1420

    Article  CAS  Google Scholar 

  • Ewing BR, Hawkins TR, Wiedmann TO, Galli A, Ercin AE, Weinzettel J, Steen-Olsen K (2012) Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol Ind 23:1–8

    Article  Google Scholar 

  • Fang K, Heijungs R (2015) Rethinking the relationship between footprints and LCA. Environ Sci Technol 49:10–11

    Article  CAS  Google Scholar 

  • Fang K, Heijungs R, De Snoo GR (2014) Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Ind 36:508–518

    Article  Google Scholar 

  • Fischer J, Manning AD, Steffen W, Rose DB, Daniell K, Felton A, Garnett S, Gilna B, Heinsohn R, Lindenmayer DB, MacDonald B, Mills F, Newell B, Reid J, Robin L, Sherren K, Wade A (2007) Mind the sustainability gap. Trends Ecol Evol 22:621–624

    Article  Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing E, Giljum S (2012) Integrating ecological, carbon and water footprint into a “Footprint Family” of indicators: definition and role in tracking human pressure on the planet. Ecol Ind 16:100–112

    Article  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY, Van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci USA 106:10219–10223

    Article  CAS  Google Scholar 

  • Germain M, Van Steenberghe V (2003) Constraining equitable allocations of tradable CO2 emission quotas by acceptability. Environ Resour Econ 26:469–492

    Article  Google Scholar 

  • Goldfinger S, Wackernagel M, Galli A, Lazarus E, Lin D (2014) Footprint facts and fallacies: a response to Giampietro and Saltelli (2014) “Footprints to Nowhere” . Ecol Ind 46:622–632

    Article  Google Scholar 

  • Goodland R, Daly H (1996) Environmental sustainability: universal and non-negotiable. Ecol Appl 6:1002–1017

    Article  Google Scholar 

  • Guttikunda SK, Tang Y, Carmichael GR, Kurata G, Pan L, Streets DG, Woo J-H, Thongboonchoo N, Fried A (2005) Impacts of Asian megacity emissions on regional air quality during spring 2001. J Geophys Res 110:D20301–D20301

    Article  CAS  Google Scholar 

  • Hadian S, Madani K (2015) A system of systems approach to energy sustainability assessment: are all renewables really green? Ecol Ind 52:194–206

    Article  Google Scholar 

  • Heijungs R, Frischknecht R (1998) A special view on the nature of the allocation problem. Int J Life Cycle Assess 3:321–332

    Article  Google Scholar 

  • Heijungs R, De Koning A, Guinée JB (2014) Maximizing affluence within the planetary boundaries. Int J Life Cycle Assess 19:1331–1335

    Google Scholar 

  • Hellweg S, I Canals LM (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113

    Google Scholar 

  • Hoekstra AY (2009) Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol Econ 68:1963–1974

    Article  Google Scholar 

  • Hoekstra AY, Hung PQ (2002) Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade. Value of water research report series (No. 11), UNESCO-IHE Institute for Water Education, Delft, The Netherlands

    Google Scholar 

  • Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109:3232–3237

    Article  CAS  Google Scholar 

  • Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344:1114–1117

    Article  CAS  Google Scholar 

  • Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7:e32688–e32688

    Article  CAS  Google Scholar 

  • Hughes TP, Carpenter S, Rockström J, Scheffer M, Walker B (2013) Multiscale regime shifts and planetary boundaries. Trends Ecol Evol 28:389–395

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. Working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, USA

    Google Scholar 

  • Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grübler A, Huntley B, Jäger J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore BIII, O’Riordan T, Svedin U (2001) Environment and development: sustainability science. Science 292:641–642

    Article  CAS  Google Scholar 

  • Kissinger M, Rees WE, Timmer V (2011) Interregional sustainability: governance and policy in an ecologically interdependent world. Environ Sci Policy 14:965–976

    Article  Google Scholar 

  • Kitzes J, Wackernagel M (2009) Answers to common questions in ecological footprint accounting. Ecol Ind 9:812–817

    Article  Google Scholar 

  • Kosoy N, Brown PG, Bosselmann K, Duraiappah A, Mackey B, Martinez-Alier J, Rogers D, Thomson R (2012) Pillars for a flourishing Earth: planetary boundaries, economic growth delusion and green economy. Curr Opin Environ Sustain 4:74–79

    Google Scholar 

  • Kratena K (2004) Ecological value added’ in an integrated ecosystem–economy model—an indicator for sustainability. Ecol Econ 48:189–200

    Article  Google Scholar 

  • Lancker E, Nijkamp P (2000) A policy scenario analysis of sustainable agricultural development options: a case study for Nepal. Impact Assess Project Appraisal 18:111–124

    Article  Google Scholar 

  • Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46:4100–4108

    Article  CAS  Google Scholar 

  • Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Develop 1:40–66

    Article  Google Scholar 

  • Lenton TM, Williams HT (2013) On the origin of planetary-scale tipping points. Trends Ecol Evol 28:380–382

    Article  Google Scholar 

  • Lenzen M, Murray SA (2001) A modified ecological footprint method and its application to Australia. Ecol Econ 37:229–255

    Article  Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112

    Article  CAS  Google Scholar 

  • Lewis SL (2012) We must set planetary boundaries wisely. Nature 485:417–417

    Article  CAS  Google Scholar 

  • Liu C, Kroeze C, Hoekstra AY, Gerbens-Leenes W (2012) Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Ind 18:42–49

    Article  CAS  Google Scholar 

  • Meadows DH, Meadow DL, Randers J, Behrens W (1972) The limits to growth. Universe Books, New York, USA

    Google Scholar 

  • Minx J, Baiocchi G, Wiedmann T, Barrett J, Creutzig F, Feng K, Förster M, Pichler P-P, Weisz H, Hubacek K (2013) Carbon footprints of cities and other human settlements in the UK. Environ Res Lett 8:035039–035039

    Article  CAS  Google Scholar 

  • Moldan B, Janoušková S, Hák T (2012) How to understand and measure environmental sustainability: Indicators and targets. Ecol Ind 17:4–13

    Article  Google Scholar 

  • Molden D (2009) The devil is in the detail. Nat Rep Climate Change 3:116–117

    Article  Google Scholar 

  • Moran DD, Wackernagel M, Kitzes JA, Goldfinger SH, Boutaud A (2008) Measuring sustainable development—Nation by nation. Ecol Econ 64:470–474

    Article  Google Scholar 

  • Niccolucci V, Bastianoni S, Tiezzi EBP, Wackernagel M, Marchettini N (2009) How deep is the footprint? A 3D representation. Ecol Model 220:2819–2823

    Article  Google Scholar 

  • Nykvist B, Persson Å, Moberg F, Persson L, Cornell S, Rockström J (2013) National environmental performance on planetary boundaries: a study for the Swedish environmental protection agency. Stockholm Resilience Center & Stockholm Environment Institute, Stockholm, Sweden

    Google Scholar 

  • Parry M, Lowe J, Hanson C (2009) Overshoot, adapt and recover. Nature 458:1102–1103

    Article  CAS  Google Scholar 

  • Peters GP (2010) Carbon footprints and embodied carbon at multiple scales. Curr Opin Environ Sustain 2:245–250

    Article  Google Scholar 

  • Rees WE (1992) Ecological footprint and appropriated carrying capacity: what urban economics leaves out. Environ Urbanization 4:121–130

    Article  Google Scholar 

  • Rees WE (1996) Revisiting carrying capacity: area-based indicators of sustainability. Popul Environ 17:195–215

    Article  Google Scholar 

  • Ridoutt BG, Pfister S (2013) Towards an integrated family of footprint indicators. J Ind Ecol 17:337–339

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009a) A safe operating space for humanity. Nature 461:472–475

    Article  CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009b) Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 14:32–32

    Article  Google Scholar 

  • Rogelj J, McCollum D, O’Neill BC, Riahi K (2013) 2020 emissions levels required to limit warming to below 2 ℃. Nat Climate Change 3:405–412

    Article  CAS  Google Scholar 

  • Smeets E, Weterings R (1999) Environmental indicators: typology and overview. Technical report (No. 25). TNO Centre for Strategy, Technology and Policy, The Netherlands

    Google Scholar 

  • Steffen W, Stafford Smith M (2013) Planetary boundaries, equity and global sustainability: why wealthy countries could benefit from more equity. Curr Opin Environ Sustain 5:403–408

    Article  Google Scholar 

  • UNEP (2013) The emissions gap report 2013: a UNEP synthesis report https://www.unep.org/pdf/UNEPEmissionsGapReport2013.pdf.

  • Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth. New Society, Gabriola Island, British Columbia, Canada

    Google Scholar 

  • Wackernagel M, Rees WE (1997) Perceptual and structural barriers to investing in natural capital: economics from an ecological footprint perspective. Ecol Econ 20:3–24

    Article  Google Scholar 

  • Wang F, Sims JT, Ma L, Ma W, Dou Z, Zhang F (2011) The phosphorus footprint of China’s food chain: implications for food security, natural resource management, and environmental quality. J Environ Qual 40:1081–1089

    Article  CAS  Google Scholar 

  • Wiedmann T, Lenzen M (2007) On the conversion between local and global hectares in ecological footprint analysis. Ecol Econ 60:673–677

    Article  Google Scholar 

  • Wiedmann T, Minx J (2008) A definition of ‘carbon footprint’ . In: Pertsova CC (ed) Ecological economics research trends. Nova Science Publishers, Hauppauge, New York, USA, pp 1–11

    Google Scholar 

  • Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S, West J, Kanemoto K (2015) The material footprint of nations. Proc Natl Acad Sci USA 112:6271–6276

    Article  CAS  Google Scholar 

  • Zijp MC, Posthuma L, Van de Meent D (2014) Definition and applications of a versatile chemical pollution footprint methodology. Environ Sci Technol 48:10588–10597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, K. (2021). Understanding the Complementarities of Environmental Footprints and Planetary Boundaries. In: Environmental Footprints. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-030-61018-0_5

Download citation

Publish with us

Policies and ethics