Skip to main content

Exploring Some Fundamentals of Environmental Footprints

  • Chapter
  • First Online:
Environmental Footprints

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 334 Accesses

Abstract

Inventory and characterization schemes play different roles in shaping a variety of footprint indicators. This chapter performs a systematic and critical investigation into the hidden inventory aspect and characterization aspect of selected environmental footprints with implications for classification and integration of those footprints. It shows that all of the carbon, water, land, and material footprints have two fundamentally distinct versions, addressing the environmental exchange of substances in terms of emissions and/or extractions either at the inventory level or at the impact assessment level. We, therefore, differentiate two broad categories of environmental footprints, namely, the inventory-oriented footprints (IVOFs) and impact-oriented footprints (IPOFs). The former allows for a physical interpretation of human pressure by inventorying emissions and extractions and aggregating them with value-based weighting factors, whereas the latter assess and aggregate the inventory results according to their potential contributions to a specific environmental impact using science-based characterization factors, with the recognition that these contributing substances are too different to be compared by mass, volume or area. While both categories have individual strengths and weaknesses, the IPOFs have a better performance than the IVOFs on the integration of footprints into a single-score metric in support of policy making. Resembling the general procedure for life cycle impact assessment (LCIA), we formulate a three-step framework for characterization, normalization, and weighting of a set of IPOFs to yield a composite footprint index, which would allow policy makers to better assess the overall environmental impacts of entities at multiple scales ranging from single products, organizations, nations, even to the whole economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlroth S, Nilsson M, Finnveden G, Hjelm O, Hochschorner E (2011) Weighting and valuation in selected environmental systems analysis tools—suggestions for further developments. J Cleaner Prod 19:145–156

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17:79–89

    Article  Google Scholar 

  • Blomqvist L, Brook BW, Ellis EC, Kareiva PM, Nordhaus T, Shellenberger M (2013) Does the shoe fit? Does the shoe fit? Real versus imagined ecological footprints. PLoS Biol 11:e1001700

    Article  CAS  Google Scholar 

  • Borucke M, Moore D, Cranston G, Gracey K, Iha K, Larson J, Lazarus E, Morales JC, Wackernagel M, Galli A (2013) Accounting for demand and supply of the biosphere’s regenerative capacity: the National Footprint Accounts’ underlying methodology and framework. Ecol Ind 24:518–533

    Article  Google Scholar 

  • Boulay AM, Bulle C, Bayart JB, Deschênes L, Margni M (2011) Regional characterization of freshwater use in LCA: Modeling direct impacts on human health. Environ Sci Technol 45:8948–8957

    Article  CAS  Google Scholar 

  • BSI (British Standards Institution) (2011) PAS 2050: 2011 specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London, UK

    Google Scholar 

  • Chapagain AK, Hoekstra AY (2008) The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int 33:19–32

    Article  Google Scholar 

  • Chapman PM, Maher B (2014) The need for truly integrated environmental assessments. Integr Environ Assess Manage 10:151–151

    Article  Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Cleaner Prod 34:9–20

    Article  Google Scholar 

  • De Meester S, Callewaert C, De Mol E, Van Langenhove H, Dewulf J (2011) The resource footprint of biobased products: a key issue in the sustainable development of biorefineries. Biofuels, Bioprod Biorefin 5:570–580

    Article  CAS  Google Scholar 

  • Dietz T (2013) Bringing values and deliberation to science communication. Proc Natl Acad Sci USA 110:14081–14087

    Article  CAS  Google Scholar 

  • EC (European Commission) (2015) Product environmental footprint (PEF). https://ec.europa.eu/environment/eussd/smgp/dev_pef.htm

  • EPA (United Sates Environmental Protection Agency) (2014) Environmental footprint analysis. https://www.epa.gov/sustainability/analytics/environmental-footprint.htm

  • Eurostat (2014) Material flow accounts. https://ec.europa.eu/eurostat/statistics-explained/extensions/EurostatPDFGenerator/getfile.php?file=145.118.86.166_1419264195_10.pdf

  • Fang K, Heijungs R (2014a) Moving from the material footprint to a resource depletion footprint. Integr Environ Assess Manage 10:596–598

    Article  Google Scholar 

  • Fang K, Heijungs R (2014b) There is still room for a footprint family without a life cycle approach—comment on “Towards an integrated family of footprint indicators” . J Ind Ecol 18:71–72

    Article  Google Scholar 

  • Fang K, Heijungs R, De Snoo GR (2014) Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Ind 36:508–518

    Article  Google Scholar 

  • Fang K, Heijungs R, De Snoo GR (2015) Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework. Ecol Econ 114:218–226

    Article  Google Scholar 

  • Finkbeiner M, Ackermann R, Bach V, Berger M, Brankatschk G, Chang Y-J, Grinberg M, Lehmann A, Martínez-Blanco J, Minkov N, Neugebauer S, Scheumann R, Schneider L, Wolf K (2014) Challenges in life cycle assessment: an overview of current gaps and research needs. In: Klöpffer W (ed) Background and future prospects in life cycle assessment, LCA compendium—the complete world of life cycle assessment. Springer Science+Business Media, Dordrecht, The Netherlands, pp 207–258

    Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  • Fuglestvedt J, Berntsen T, Myhre G, Rypdal K, Skeie RB (2008) Climate forcing from the transport sectors. Proc Natl Acad Sci USA 105:454–458

    Article  CAS  Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing E, Giljum S (2012) Integrating ecological, carbon and water footprint into a “Footprint Family” of indicators: definition and role in tracking human pressure on the planet. Ecol Ind 16:100–112

    Article  Google Scholar 

  • Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level (First edn). Report I: Characterisation. https://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf

  • Guinée JB, Heijungs R (1995) A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environ Toxicol Chem 14:917–925

    Article  Google Scholar 

  • Guinée JB, Heijungs R, Udo de Haes HA, Huppes G (1993) Quantitative life cycle assessment of products: 2. Classification, valuation and improvement analysis. J Cleaner Prod 1:81–91

    Article  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Sleeswijk AW, Suh S, Udo de Haes HA, De Bruijn H, Van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Van der Ven BL (2002) Handbook on life cycle assessment. An Operational Guide to the ISO Standards. Kluer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hanafiah MM, Xenopoulos MA, Pfister S, Leuven RS, Huijbregts MA (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278

    Article  CAS  Google Scholar 

  • Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    Article  CAS  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Publisher, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Heijungs R, Guinée J, Kleijn R, Rovers V (2007) Bias in normalization: causes, consequences, detection and remedies. Int J Life Cycle Assess 12:211–216

    Article  Google Scholar 

  • Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113

    Google Scholar 

  • Hoekstra AY, Hung PQ (2002) Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series (No. 11), UNESCO-IHE Institute for Water Education, Delft, The Netherlands

    Google Scholar 

  • Hoekstra AY, Gerbens-Leenes W, Van der Meer TH (2009) Reply to Pfister and Hellweg: water footprint accounting, impact assessment, and life-cycle assessment. Proc Natl Acad Sci USA 106:E114–E114

    Article  CAS  Google Scholar 

  • Huysman S, Sala S, Mancini L, Ardente F, Alvarenga RA, De Meester S, Mathieux F, Dewulf J (2015) Toward a systematized framework for resource efficiency indicators. Resour Conserv Recycl 95:68–76

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2014) Climate change 2014 synthesis report. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT.pdf

  • ISO (International Organisation for Standardisation) (2006) ISO 14044 International Standard. In: Environmental management—life cycle assessment—requirements and guidelines. International Organisation for Standardisation, Geneva, Switzerland

    Google Scholar 

  • Karlsson R, Luttropp C (2006) EcoDesign: what’s happening? An overview of the subject area of EcoDesign and of the papers in this special issue. J Cleaner Prod 14:1291–1298

    Article  Google Scholar 

  • Kitzes J, Galli A, Bagliani M, Barrett J, Dige G, Ede S, Erb K, Giljum S, Haberl H, Hails C, Jolia-Ferrier L, Jungwirth S, Lenzen M, Lewis K, Loh J, Marchettini N, Messinger H, Milne K, Moles R, Monfreda C, Moran D, Nakano K, Pyhälä A, Rees W, Simmons C, Wackernagel M, Wada Y, Walsh C, Wiedmann T (2009) A research agenda for improving national ecological footprint accounts. Ecol Econ 68:1991–2007

    Article  Google Scholar 

  • Klinglmair M, Sala S, Brandão M (2014) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19:580–592

    Article  Google Scholar 

  • Kounina A, Margni M, Bayart JB, Boulay AM, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Van Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721

    Google Scholar 

  • Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46:4100–4108

    Article  CAS  Google Scholar 

  • Lenzen M, Murray SA (2001) A modified ecological footprint method and its application to Australia. Ecol Econ 37:229–255

    Article  Google Scholar 

  • Lenzen M, Borgstrom Hansson C, Bond S (2007) On the bioproductivity and land-disturbance metrics of the ecological footprint. Ecol Econ 61:6–10

    Article  Google Scholar 

  • Lenzen M, Moran D, Bhaduri A, Kanemoto K, Bekchanov M, Geschke A, Foran B (2013) International trade of scarce water. Ecol Econ 94:78–85

    Article  Google Scholar 

  • Matthews E, Amann C, Bringezu S, Fischer-kowalski M, Hüttler W, Kleijn R, Moriguchi Y, Ottke C, Rodenburg E, Rogich D, Schandl H, Schütz H, Van der Voet E, Weisz H (2000) The weight of nations: material outflows from industrial economies. World Resources Institute. https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=884F4E9CF9267DC7C1BAF57CE7AB3E58?doi=10.1.1.27.8642&rep=rep1&type=pdf

  • Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions, 2nd edn. Cambridge University Press, New York, USA

    Book  Google Scholar 

  • Page G, Ridoutt B, Bellotti B (2012) Carbon and water footprint tradeoffs in fresh tomato production. J Cleaner Prod 32:219–226

    Article  Google Scholar 

  • Ridoutt BG, Huang J (2012) Environmental relevance—the key to understanding water footprints. Proc Natl Acad Sci USA 109:E1424–E1424

    Article  CAS  Google Scholar 

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Change 20:113–120

    Article  Google Scholar 

  • Ridoutt BG, Pfister S (2013a) A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Assess 18:204–207

    Article  CAS  Google Scholar 

  • Ridoutt BG, Pfister S (2013b) Towards an integrated family of footprint indicators. J Ind Ecol 17:337–339

    Article  Google Scholar 

  • Schoer K, Weinzettel J, Kovanda J, Giegrich J, Lauwigi C (2012) Raw material consumption of the European Union—concept, calculation method, and results. Environ Sci Technol 46:8903–8909

    Article  CAS  Google Scholar 

  • Skeie RB, Fuglestvedt JS, Berntsen T, Lund MT, Myhre G, Rypdal K (2009) Global temperature change from the transport sectors: historical development and future scenarios. Atmos Environ 43:6260–6270

    Article  CAS  Google Scholar 

  • Sleeswijk AW, Van Oers LFCM, Guinée JB, Struijs J, Huijbregts MAJ (2008) Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Sci Total Environ 390:227–240

    Article  CAS  Google Scholar 

  • Udo de Haes HA (2006) How to approach land use in LCIA or, how to avoid the Cinderella effect? Comments on ‘Key elements in a framework for land use impact assessment within LCA.’ Int J Life Cycle Assess 11:219–221

    Article  Google Scholar 

  • Udo de Haes HA, Heijungs R (2009) Analysis of physical interactions between the economy and the environment. In: Boersema JJ, Reijnders L (eds) Principles of environmental sciences. Springer, Dordrecht, The Netherlands, pp 207–237

    Chapter  Google Scholar 

  • Van der Voet E, Heijungs R, Mulder P, Huele R, Kleijn R, Van Oers L (1995) Substance flows through the economy and environment of a region. Environ Sci Pollut Res 2:137–144

    Article  Google Scholar 

  • Van der Voet E, Van Oers L, Nikolic I (2004) Dematerialization: not just a matter of weight. J Ind Ecol 8:121–137

    Article  Google Scholar 

  • Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth. New Society, Gabriola Island, Canada

    Google Scholar 

  • Wiedmann T, Minx J (2008) A definition of ‘carbon footprint’. In: Pertsova CC (ed) Ecological economics research trends (Chap. 1). Nova Science Publishers, New York, USA, pp 1–11

    Google Scholar 

  • Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S, West J, Kanemoto K (2015) The material footprint of nations. Proc Natl Acad Sci USA 112:6271–6276

    Article  CAS  Google Scholar 

  • Zonderland-Thomassen MA, Lieffering M, Ledgard SF (2014) Water footprint of beef cattle and sheep produced in New Zealand: water scarcity and eutrophication impacts. J Cleaner Prod 73:253–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, K. (2021). Exploring Some Fundamentals of Environmental Footprints. In: Environmental Footprints. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-030-61018-0_3

Download citation

Publish with us

Policies and ethics