Skip to main content

Fatigue Assessment of Porosity in Electron Beam Melted Ti-6Al-4V

  • Conference paper
  • First Online:
Fracture, Fatigue, Failure and Damage Evolution , Volume 3

Abstract

Additive manufacturing (AM) has proven itself to be an effective and versatile solution in replacing aircraft structures and components. However, the AM process still requires the necessary structural reliability as well as the technology to assess operational longevity. In this work, a fatigue performance and damage progression assessment framework is proposed to achieve a fundamental understanding of the fatigue damage mechanisms and its progression in as-built treated electron beam melted (EBM) Ti-6Al-4V at the macroscopic structural scale as well as at the microscopic constituent scale. The work presented utilizes digital image correlation (DIC), an optical strain measurement technique, as a method to detect crack initiation sites occurring on the material’s surface and propagating throughout the specimen. A comprehensive testing framework and experimental procedure is developed to generate fatigue data for AM material Ti-6Al-4V as-built specimens. Characterization and simulation of the fatigue progress due to AM process defects (voids, surface roughness, etc.) are also performed using damaging energy progress and damage evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tofail, S.A., Koumoulos, E.P., Bandyopadhyay, A., Bose, L., O’Donoghue, S., Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21(1), 22–37 (2018)

    Article  Google Scholar 

  2. Findlay, S., Harrison, N.: Why aircraft fail. Mater. Today 5(11), 18–25 (2002)

    Article  Google Scholar 

  3. Hrabe, N., Gnäupel-Herold, T., Quinn, T.: Fatigue properties of a titanium alloy (ti-6al-4v) fabricated via electron beam melting (ebm): effects of internal defects and residual stress. Int. J. Fatigue 94, 202–210 (2017)

    Article  Google Scholar 

  4. Tammas-Williams, S., Withers, P., Todd, I., Prangnell, P.: The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci. Rep. 7(1), 7308 (2017)

    Article  Google Scholar 

  5. Biswal, R., Syed, A.K., Zhang, X.: Assessment of the effect of isolated porosity defects on the fatigue performance of additive manufactured titanium alloy. Addit. Manuf. 23, 433–442 (2018)

    Google Scholar 

  6. Chern, A.H., Nandwana, P., Yuan, T., Kirka, M.M., Dehoff, R.R., Liaw, P.K., Duty, C.E.: A review on the fatigue behavior of ti-6al-4v fabricated by electron beam melting additive manufacturing. Int. J. Fatigue 119, 173–184 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Turbine Engine Fatigue Facility of the Air Force Research Laboratory at Wright-Patterson Air Force Base for equipment use, assistance, and technical support of this research effort. The authors would also like to acknowledge and thank the Center for Design and Manufacturing Excellence at the Ohio State University for supplying and creating the material needed with their equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Celli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Warner, J., Celli, D., Rindler, J., Shen, M.H., Scott-Emuakpor, O., George, T. (2021). Fatigue Assessment of Porosity in Electron Beam Melted Ti-6Al-4V. In: Xia, S., Beese, A., Berke, R.B. (eds) Fracture, Fatigue, Failure and Damage Evolution , Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-60959-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60959-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60958-0

  • Online ISBN: 978-3-030-60959-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics